Coastal Assessment Survey
Solway North Coast

September and October 1996

Volume 1 of 3: Introductory material, and the western part of the coast:
Carrickcarglin Point to Crook of Baldoon
Map sets 1 to 19

A Report for HISTORIC SCOTLAND

by the CENTRE for FIELD ARCHAEOLOGY
CONTENTS
1. Introduction 3
2. Methodology 8
3. Study Results 12
4. Case Studies 460
5. Summary and recommendations 471
6. References 480
Plates 488
1 INTRODUCTION

Background

In June 1996 Historic Scotland invited tenders to conduct the first phase of a coastal survey project to cover the Scottish part of the Solway Firth from the Mull of Galloway (NX 160 306) eastwards to the bridging point of the River Sark (NY 327 669). Following submission of its Project Design, the Centre for Field Archaeology was awarded this project.

This project is part of a larger Historic Scotland review of archaeological resources in relation to the coastal zone and is the fourth such survey to be completed. Surveys have already examined: the north coast of the Forth estuary (Robertson 1996); the south coast of the Forth estuary (James 1996); and a stretch of coast from Ullapool to Lochinver in Wester Ross (Long 1996). This programme of work has emerged from the recognition of the importance of the coastal zone to Scottish archaeology and the need for information to allow Historic Scotland to determine the nature of the threats to coastal areas and to determine what the best solution is for specific sites (Ashmore 1994). Of particular relevance here was the recognition by Ashmore of the need to obtain better targeted standard information for coastal areas. As a consequence, all of the recent surveys have followed a similar methodology, based on Historic Scotland’s Archaeology Procedure Paper 4, Coastal Zone Survey (1996).

In addition to the archaeological dimension, this survey has been conducted against a wider background of interest in the management of the Solway Firth. The Solway Firth Review, published in 1996 by the Solway Firth Partnership, presents a review of available information and is designed to provide a reference point for the development of a management strategy for the Solway Firth Partnership Area. Our survey encompasses only a part of this area, which also extends along the south shore of the Firth. The Review considers, amongst other topics, landscape and cultural heritage, geology and geomorphology, marine and coastal environments, ecology, social and economic resources, recreation and tourism, harbours and shipping as well as coastal protection, planning and management. Archaeology, and the preservation of archaeological sites, clearly cross-cut a number of these subjects, and the present Report represents a contribution to the debate leading to the development of a management strategy for the area.

The Department of Archaeology at Edinburgh University and the Centre for Field Archaeology have a long term interest in the archaeology of the coastal zone, perhaps best expressed in recent years in work in the Outer Hebrides, such as on the Valtos peninsula on Lewis, or at Bosta Beach on Great Bernera, and in the study of intertidal crannogs being undertaken by Alex Hale. In addition the Centre has already been involved in applied research along the north side of the Solway, having conducted extensive survey along the coast near Annan on behalf of British Nuclear Fuels plc and further west at the landfall of the Irish Gas Southwest Gas Interconnector pipeline. This project therefore represented an opportunity to combine the research interests of a number of members of staff and to provide the baseline for supplementary research over the next few years.
The fieldwork reported here was conducted by Kirsty Cameron, Dr Mike Creasey, Lisa Marlow, Dr Malcolm Murray, Ronan Toole, Alex Hale, Matt Ritchie, and Jon Bendicks. Desk-based work and report production was chiefly conducted by Mike Creasey and Ronan Toole, with illustrations being prepared by Kevin Hicks, George Mude and Kirsty Cameron. Drs Gerard Coles and Ian Ralston provided assistance with the interpretation of geomorphological and archaeological data. Dr Bill Finlayson managed the project for CFA and Patrick Ashmore for Historic Scotland.

Project Aims

The objectives for the 1996 survey were set out in the Historic Scotland Project Outline as:

1) To understand how best to assess the built heritage of the Solway over the next few years within the resources available, and in such a way as to encourage future research projects and local monitoring and fieldwork.

2) To prepare factual information on and an inventory of part of the coastal heritage to provide a basis for more work including:
 - detailed survey of important areas prior to protection, excavation or abandonment;
 - monitoring of sites and stretches of coastline by local organisations and people.

In addition to agreeing to follow the Historic Scotland Procedure Paper to fulfil these objectives, CFA has undertaken to undertake certain additional elements of work to further the long term objectives of the project, including establishing local contacts with a view to promote long term monitoring of the shore and to conduct additional aerial photographic survey.

Report Format

This Report contains the results of the project. These are presented sequentially for each portion / cell of the coastline and follow a standard format. Elements included are an introductory section, a section describing the methodology employed, a section containing the geomorphological, coastal erosion and archaeological data and maps. Pertinent issues are highlighted through a number of case studies, which are followed by a section analysing the results and making various recommendations, and a list of references.

The Study Area

Introduction

The Scottish part of the Solway Firth included within the study area defined for this project comprises a wide variety of coastal forms, including hard steep shorelines as well as a variety of areas in which depositional characteristics predominate. These latter comprise sand dunes, intertidal mudflats, estuarine and lagoonal complexes and saltwater marshes. The total length of coast in Dumfries and Galloway is estimated at 447km (Ritchie and Mather 1984), and the Solway Coast study area therefore comprises a significant proportion of this. Within this coastal strip, there are an estimated 35.4km of

SOLW3120/20.12.97 4 of 490 CFA
beach formations. The total area of sand in Dumfries and Galloway, including beaches, dunes and links is 2,368ha, representing 4.7% of the Scottish total, but, at least in 1984, there were no beaches with high perceived erosion damage. 78% of the beaches have raised beaches near the coast, representing an important resource for early prehistory in the area. The presence of raised beaches and palaeochannels has resulted in this coastline having an extremely varied cultural heritage, ranging in date from the numerous Mesolithic sites identified (principally by W.F.Cormack) onwards to include features of industrial archaeological interest, such as the site of the former rail bridge over the Solway at Annan.

Known archaeological sites therefore range from "hard" upstanding structures to "soft" structures, marked by much flimsier and sometimes wholly organic remains such as the remains of former fishing systems and on to what currently appear to be largely structure free, and on occasion structureless sites, such as Mesolithic and Neolithic flint and chert scatters. Known cultural heritage sites occur on sectors of "hard" rocky coastline, as well as in "soft" areas, where sands, silts and clays constitute the geomorphological formations represented. The combination of differing geomorphological and archaeological site characteristics makes for a particularly rich and complex study area. The intricacies of marine transgressions and regressions, and the presence of raised beaches make the environment both complex and rewarding to study.
Extent and Dimensions

CFA initially proposed to conduct a rapid scan desk-based survey for both archaeological and geomorphological aspects of the survey for the full 320km length of coast and to determine, based on the results of this rapid scan, how much of the full 320km strip could be completed in detail during the subsequent desk-based and field stages. In the event, and partly as the result of relatively few previously unknown sites being located during the investigations, we were able to complete the full 320km distance for all stages of the project.

The Tidal Environment of the Solway Firth

The Solway Firth is influenced by the Atlantic Ocean and the physical features of the sea, climate and tidal regimes all contribute to the many varied shoreline features identified along the Solway Firth. The Solway Firth is an area of high tidal energy and this has a major bearing on the transportation of sea-bed sediment. The relative strength and duration of the tidal ebb and flood velocities tend to produce a resultant upstream transport vector which is augmented by wave induced currents. This strongly tidal environment has a bearing on shipping and, combined with the shallow nature of much of the Firth is a controlling factor as to why there are no major commercial developments at the head of the Firth (Solway Firth Review, 3 and 41).

The climate is relatively mild and certain parts of the Firth can at times be sheltered against the actions of wind and waves, although winds can change suddenly and expose sheltered coasts to wave erosion. The Galloway promontory affords shelter to areas in its lee from the severity of south-westerly gales. The height and direction of waves are governed by the dominant wind direction at any one time.

Figure 1 demonstrates the principal movement of residual currents and the general trend of sediment transportation. Much of the work concerning sediment transportation in the Solway Firth has been established from study of radioisotopes originating from Sellafield (more particularly Cs\(^{137}\)) and the distribution of sea-bed and surface markers and sea-borne domestic waste.

Figure 1 Tidal Currents (after Solway Firth Review 1996, 46)
Previous Archaeological Research

There has been a considerable amount of previous archaeological research in the area, and the desire to protect the archaeological resource is witnessed by the number of Scheduled Ancient Monuments along the coastal strip. Much of this research has, in recent decades, been prompted by coastal erosion, for example the work of Gordon Ewart at Craggleton Castle (Ewart, 1985), or of Trevor Cowie in the Luce Sands. The information held in the Transactions of the Dumfries and Galloway Natural History and Antiquarian Society represents an invaluable resource. It is relatively unusual in Scotland to have a local society which has such a long and constant record of archaeological research and active local researchers such as Cormack have made a substantial contribution to our knowledge of this shore zone. The combined natural history and archaeological interests of the Society are of course particularly relevant to the needs of the current project. Restricted sectors of the coastal zone were examined as part of RCAHMS rapid assessment programme in the first half of the 1980s (RCAHMS 1991, 1985).

There has been a considerable amount of archaeological flying conducted in the eastern part of the survey area. Much of this has been undertaken in the late 1970s by Professor Barri Jones of Manchester University and has focused particularly on the Roman period remains at the east end of the study area (e.g. Jones, 1979, with map between pp. 40 and 41). Little systematic archaeological research has been conducted on certain landscape facets that have proved fruitful elsewhere, such as the extensive mudflats of the eastern part of the estuary.

There have been a number of geomorphological studies made along the Solway Coast, including work by Jardine and Morrison (1976). Recently research has been conducted by Andy Haggart of London Guildhall University. Dr Richard Tipping of Stirling University is currently working at Picts’ Knowe, and in part his work is reassessing Jardine’s research. Dr Tipping’s research area does not lie within the current coastal margin but, since it has a marine component, this serves as a reminder of how considerable coastal change has been over the last few thousand years.

Acknowledgements

We would like to express our thanks to all those who assisted us in this project. In particular we would like to mention Tony Woods of HM Coastguard Service Kirkcudbright and Wally Wright, the SNH warden at Caerlaverock.
2 METHODOLOGY

Within the framework furnished by Historic Scotland Procedure Paper 4, CFA proposed a four phase approach: rapid scan survey, full desk-based survey, field survey, and reporting.

Phase 1

CFA conducted a rapid scan desk-based survey for both archaeological and geomorphological aspects of the survey for the full 320km length. Based on the results obtained, senior staff then assessed whether the full 320km strip could be completed within available resources at the desk-based level. CFA had guaranteed to complete a minimum 250km strip at the full desk-based level, but had proposed to extend this if possible, as it was appreciated that the fundamental purpose of the study is to provide an initial suite of information covering as large an area as practical, which can then be examined in more detail as appropriate in subsequent stages.

During the course of the rapid scan, CFA made initial contact with the relevant bodies listed in the Historic Scotland Procedure and Project Outline.

Phase 2

CFA then carried out a full desk-based study, in accordance with Historic Scotland procedures. This research identified a series of zones characterised respectively by accretion, stability, or recession, which were subsequently ground-truthed to verify the preliminary conclusions on their characteristics derived from the desk-based study. Ground-truthing was conducted on the basis of visits to sample locations, rather than by the examination of continuous lengths of coastline. An important aspect of this work was to assess the reliability of available geological mapping in the area.

CFA concurred with the Historic Scotland Project Outline in considering that aerial photographic imagery would be of particular importance to the survey, especially in the study of intertidal mud and silt flats. This view was partially an outcome of safety considerations. Examination of accessible aerial photography was also important to ensure good spatial coverage within the constraints of available resources. In addition, however, we consider that the aerial photographic imagery is probably the best available source of information for those areas below High Water Mark. Previous surveys of intertidal zones have shown that aerial photographic imagery is often the only source which reveals the patterns of large scale features.

There are several relevant series of photographs, including runs from the immediately post War period, and surveys undertaken in the 1960s and 70s and obtained for land use capability assessments. These provide closely-dated series of images that can be used for comparative purposes over a considerable period. When combined with ground inspection, they can provide sequential evidence for almost 50 years of change. Although the Historic Scotland procedure documentation notes that the examination of several series of photographs and map sources can be expensive, CFA considered that, especially given the importance we attach to aerial photographic analysis for the intertidal zone, the time spent on aerial photographic analysis and other documentary sources, in this context,
repaid the investment. In addition, it can be difficult in the field to determine whether a given stretch of coast is accreting, stable, or eroding, or indeed oscillating through time and the aerial photographic evidence furnishes comparative data which makes this assessment more secure.

In addition to the existing aerial photographic collections, CFA considered that new aerial photography could be obtained. We note that the Historic Scotland Review recommends against setting out to acquire new aerial imagery, except in certain conditions. CFA however considered that, against the background of the known tidal regime of the Solway, the use of oblique aerial photography may permit the most economical and effective way of examining the intertidal zone specifically for archaeological purposes, in addition to the benefits to safety of avoiding walkover survey in what can be a treacherous area. CFA considered it unlikely that the existing coverage would provide a systematic record of the intertidal zone, which has been borne out by our examination of the available cover. Aerial photography accessible to CFA staff, thus, whilst providing valuable information for the coastal erosion aspect of the study, is far from furnishing a comprehensive set of images, achieved in suitable lighting and tidal conditions, for either the known archaeological resources located on the coastal edge or for potential examples located below the high water mark.

What is still required is an initial assay, if justified followed by systematic effort, to record the intertidal zone at low tide, with low sun, to gain the maximum definition of what may be relatively small-scale or fugitive traces, suitably highlighted by oblique lighting conditions. Given the assumed absence of substantial colour differences to enable feature identification against natural silts (as noted in the Project Outline) and the probability that many features will be eroding almost to the level of the surrounding deposits and will therefore only have low relief, it is vital that photographs are taken in optimal conditions of tide and lighting. To ensure that flying was undertaken in optimal conditions, we stated that we might not be able to conduct this element of Phase 2 at the same time as the deskwork, but would programme it to fit the theoretical ideal conditions. It is also clearly advantageous that an aerial sortie is fully informed by the results obtained by other components of the survey programme, and to this end a flying map has been prepared, on which target zones and sites have been identified. In fact, tides, light and weather have meant that this aspect of work has not been possible within the timetable for producing this report and, with the agreement of Historic Scotland’s Project Manager, the results of the aerial survey will be produced as early in 1997 as suitable conditions prevail, and a Supplement to the present Report will be prepared thereafter.

In many respects the palaeoenvironmental data required for the purposes of the project have already been collected, and one of the chief aspects of the work that was required is that of collation. Unfortunately, as much of this work has not been conducted with a specific archaeological/heritage interest and has occurred over the last 30 years, there are inevitably problems of compatibility of information and standards of research. The focus of most of the palaeoenvironmental research has been on Holocene deposits and Late glacial material is less well studied.

Phase 3
The archaeological survey undertaken required (as specified in the Historic Scotland procedure) to be systematic and to be conducted in all relevant land parcels (with the exception of unsafe intertidal areas and certain areas of cliffed coastline. In general on cliff lines the top of the cliff edge was walked, and a search was made for previously known sites on the cliff face, but the base of cliff edges could not be systematically walked.). Our initial estimate was that we could cover a minimum length of coast (including foreshore and immediate hinterland) of approximately 250km. We did not attempt to specify at the outset exactly which strips this examination would include, as the selection in part depended on access negotiations conducted after award of contract. There were obvious potential problems in gaining access, for example the extent of fieldwork that could be undertaken around the Lace Sands depended upon arrangements that could be made with the Ministry of Defence. CFA did, however, undertake to ensure that the field survey covered a representative sample of the various combinations of environmental settings and, on the cultural side remains of diverse periods and types. In the event, both the rate of progress and the helpfulness of the MoD and other landowners allowed us to survey almost the entire 320km coastline.

The desk study was completed before fieldwork commenced, allowing the field teams to be supplied with data assembled from a range of sources for checking. In essence, the fieldwork comprised standard archaeological fieldwalking survey, combined with the recording of the erosional status of sites, the assessment of vulnerable parts of the landscape, and ground truthing of geomorphological data. We used GPS to assist in the determination of the location of sites for mapping as required in the Historic Scotland Procedure, where mapped features at the local scale did not provide accurate control points. Because of the restricted availability of various members of the project team, the survey was not done as a single sweep, but comprised a walk over by a team of archaeologists, several inspections by the geomorphologists and a final survey session by the geomorphologists in conjunction with CFA’s Environmental scientist (Dr Cressey) on the project.

Survey conditions were not ideal, as extensive areas of thick vegetation cover of land above the High Water Mark, potentially masking small-scale archaeological features, proved to be a problem. Although the survey was conducted in the autumn and early winter of 1996 few problems were encountered with weather conditions. Some areas, of course, could not be walked. These included some areas of high cliffs, and, most significantly along the Solway coast, seas of intertidal mudflats that could not be traversed on foot for safety reasons.

Phase 4

We allowed a considerable time element for reporting, as we appreciated that a considerable volume of data was likely to be produced during the survey. The present Report has been produced in the format requested by Historic Scotland. Preceding surveys in the series described in the Introduction above had made progressive modifications to the Historic Scotland specification, based on lessons gained during the course of work, and the present Report has made a further number of minor modifications designed to help make the data more accessible. These involve separating the archaeological data into separate lists for sites on firstly the coastal edge and foreshore and secondly those located within the hinterland areas that were examined.
3 STUDY RESULTS

This part of the report presents the survey results. For the purposes of this study, the coastline was divided into 56 sections. Each section of the survey is presented with a brief introduction to its hinterland geology and coastal morphology, followed by the identification of its erosion class. Then built heritage and archaeological resources are briefly enumerated. Following these introductory pages, are the gazetteer pages for each subject, each page of gazetteer entries accompanied by its respective map at the scale of 1:25,000.

Analysis of the results is presented in a series of case studies comprising Part 4 of this Report, with more general analyses and recommendations being held over until Part 5.

Within the study zone, there are extensive areas of shore which presently appear to be stable, but which have at some point been armoured by coastal defences. It is assumed that the defences are there because of past erosional problems and therefore it is considered that the addition of a new erosional class, extending those used in previous surveys, might be appropriate to categorise such sectors. These form, effectively, sectors of meta-stable shore - which are only stable because of the emplacement of man-made coastal defences. Should these defences fail or be allowed to fail under a policy of managed retreat, then archaeological sites behind them would of course be threatened.

This proposed coastal category has not been introduced in this Report, but the descriptions contained in the various sectional accounts reveal the existence of this phenomenon. It is important to draw attention to the existence of such man-made defences, since any policy change affecting their upkeep could over time produce indications that the number of archaeological sites currently actively threatened by erosion could be a serious underestimate.
MAP 1: CARRICK POINT TO MARY POINT BAY

Hinterland Geology and Coastal Geomorphology: This section includes the peninsula of the Mull of Galloway which forms the most southerly point of Scotland. The underlying geology consists of the Wenlock Series that includes greywacke and shale. On the Mull of Galloway the hinterland comprises a shallow layer of soil derived from till deposits that overly sheer precipitous cliffs. Further north at Carrantoill, less steep cliffs continue and again these are covered with till with shallow pedsol formations. An isthmus has been formed between West and East Tarbet bay and a platform of land divides the two. The foreshore at East Tarbet is predominately shingle. The intertidal zone becomes much shallower towards Maryport Bay with sand bars, shingle and boulders. The hinterland comprises raised beach deposits with relict shore platforms on which are developed shallow brown forest soils. Fluvio-glacial deposits (primarily sand and gravel) outcrop at Maryport Bay. Immediately north of the bay, raised beach deposits occur and continue to Caithness Point.

Erosion Class: This section of coastline is exposed to north-easterly gales. The base of the cliffs are being eroded by wave action and boulder fall is common at their base which suggests past and on-going cliff-edge erosion. Coastal retreat is, however, predicted to be relatively slow owing to the fairly resilient nature of the greywacke cliffs. Folding of the lithology exposes units of different strengths. Weaker units such as mudstones are being preferentially eroded, forming deep gullies. East Tarbet is trapping shingle that is probably derived from the raised beach area further north. A shallow intertidal zone continues northwards from Back Bay (NX 142330) and continues to Caithness Point. The intertidal zone between these locations consists of poorly sorted fluvioglacial pebbles and cobbles. Sandy spits occur where shingle is absent. Shingle is banked at the HWM but longitudinal grading is not evident. Accretion is occurring in parts and on the whole the HWM area appears to be stable.

Built Heritage & Archaeology: The archaeology of this section is varied, ranging from later prehistoric monuments, such as The Dunann promontory fort and possibly the earthworks at the Mull of Galloway, to early Christian/medieval monuments, such as St Medan’s Chapel and Chapel Wells, and to more recent monuments such as the nineteenth century cottage and quay at East Tarbet Bay (Graham, 1979, 46). A cluster of monuments are situated at or close to the isthmus of the Mull of Galloway while other sites are distributed in a more scattered fashion along the coast. There is no indication of coastal erosion affecting the recorded sites, with the exception of the earthwork (NX 135W 17) which is suffering from minor erosion derived from wave abrasion of the coastal edge at that point. Of greater significance to the survival of sites in this section is natural deterioration, and particularly for the monuments comprising earthworks, the detrimental action of animals; principally cattle and rabbits.
1. CARRICKCAIRLIN POINT, CARRICKCOIL AND BACK BAY
NX 155 307
1.4km
Mainly rock platform
Cliffs (> 10m)
Till over visible rock
An exposed rocky promontory headland consisting of Precambrian Culmian greywacke and slate overlain by till and shallow humus-iron podsol. A narrow isthmus has been formed at East Tarbet where graded shingle banks are backed by a steep gravel slope. Steep till slope overlies incised rock platform at Carrickcoil. Cliff and rock platform give way to a boulder and shingle beach at Back Bay.

2. MARYPORT BAY
NX 146 350
4.5km
Cliff (< 10m)
Raised beach/rocky shore platform
Irregular high terraced raised beach deposits at Carrickholm above shingle and boulder beach.
The raised beach is indexed at Maryport where glacially derived sand and gravel are exposed and meet a sand, shingle and boulder scree shoreface.
Towards Culness Point, an exposed promontory headland is backed by marine sand and shingle with fairly shallow brown forest soil.
1. CARRICKCARLIN POINT, BLACK ROCK
NX 155 307
1.4km
Eroding or stable
This unit has an exposed north-easterly aspect. The cliff base comprises deep gullies that are being scoured and continually abraded by wave action. Erosion is predicted as occurring only slowly due to the fairly resilient nature of the greywacke.

2. EAST TARBERT BAY
NX 144 310
0.4km
Accreting or stable
An exposed bay consisting of boulders and shingle that is banking up against the base of a quay and against a cliff eroded back slope. There is no evidence of longitudinal grading along the beach but the bay is apparently forming a re-entrant trap for shingle along the inshore wave zone. Storm run-off and cattle are eroding the steep slope down to the beach.

3. CARRICKAMURLAN
NX 144 320
1.7km
Eroding or stable
This stretch of indented cliff is incised with numerous deep gullies between steeply dipping slates that are continually scoured and abraded. Boulder accumulation within the gullies attests to rock fall but the process is considered to be very slow.

4. MARYPORT BAY, CAILNESS POINT.
NX 146 350
Accreting or stable
An exposed beach with an easterly aspect. The wide intertidal zone contains numerous sand and shingle bars. The beach is predominantly shingle that forms a gradual incline to the HWM. A very wide intertidal zone continues north of Caillsness Point. The higher shore margin is consolidated with grass cover and suggests that this region of coast is at the present stable.
MAP 1: BUILT HERITAGE AND ARCHAEOLOGY

Sites on the Coast Edge & Foreshore

NX13SW 17
NX 1452 3086
MULL OF GALLOWAY
Earthwork
Scheduled Ancient Monument
1st Mill. BC/AD
Fair
Monitor

NX 1445 3089
EAST TARBET BAY
Cottage & Quay
Statutory Listed Building
19th century
Good
Nil

NX13SW 11
NX 1439 3159
CHAPEL WELLS, MULL FARM
Well
1st & 2nd Mill. AD
Uncertain; not located
Nil

NX13SW 10
NX 1437 3159
ST MEDAN’S CHAPEL
Cave & Chapel
Scheduled Ancient Monument
1st & 2nd Mill. AD
Uncertain; not located
Nil

NX13SW 8
NX 1417 3229
THE DUNNAN, PORTANKILL
Promontory Fort
Scheduled Ancient Monument
1st Mill. BC/AD
Good
Nil

Sites in the Hinterland

NX 1532 3069
MULL OF GALLOWAY
Drystone Fieldbank
18/19th century
Good
Nil

NX13SW 16
NX 1422 3104
MULL OF GALLOWAY
Earthwork
Uncertain
Good
Nil
MAP 2: CAILNESS POINT TO CAVE OF GRENAN

Hinterland Geology and Coastal Geomorphology: This section of the coast has a substantially lower cliff-edge than the coastline in Map 1. However this section is still very exposed. The hinterland consists of raised beach deposits (sand, gravel and boulders) glacial sands and gravel and possibly morainic drift at Drummore. The shoreline is more indented forming a series of sandy bays at Cairngarrock, Drummore and Kilstay respectively. The bays generally contain poorly sorted boulders of varying sizes intermixed with sand and shingle spits.

Erosion Class: The majority of this coast line is classified as stable or accreting, however in Units 4 and 6 serious erosion is occurring. At Drummore harbour recent concrete sea and beach defences have been constructed. Here gabion baskets have been placed to control the loss of sand and shingle at the HWML but these works are failing. At Low Gurhte, c.30m of concrete sea wall has been displaced and now lies in pieces across the foreshore. Builders rubble has been used to shore up breaches but this is failing due to recent storms. Kilstay Bay is protected by a sea wall and the shore was seen to be accreting or stable.

Built Heritage & Archaeology: The majority of sites in this section date to the eighteenth, nineteenth and early twentieth centuries and are clustered in and around the village of Drummore. Reflecting the past predominance of maritime activities (Graham, 1979, 45) they include stores, mills, an inn, fishing stakes and a harbour. Several previously unrecorded World War 2 defences are situated at Cailness Point south of the village. Three prehistoric sites, comprising two flint scatters and a standing stone at Terally Bay are distributed along the immediate coastal hinterland northward from Drummore. The monuments situated on the coast and foreshore are affected by limited erosion. The majority of sites however are located in the hinterland and are not threatened by coastal erosion. Natural deterioration and land subsidence is adversely affecting the World War 2 monuments while animal action may be damaging the standing stone at Killstay.
Map 2: Hinterland Geology and Coastal Geomorphology

1. South of CAINNESS POINT to CAIRNGARROCH BAY
 NX 142 363
 1.8km
 Cliff (< 10m)
 Raised beach and marine deposits
 This unit has a north-easterly aspect and is very
 exposed. The hinterland consists of undulating
 raised beach deposits. Shingle and sand dominate
 the wide intertidal area and become progressively
 sandier towards Cairngaroch Bay. A recently
 built concrete sea wall defends c.75% of the bay.

2. DRUMORE HARBOUR to CURGIE BAY
 NX 135 368
 1.2km
 Low edge (< 5m)
 Drift till, till over rock/raised beach deposits
 Drumore and the hinterland surrounding the bay is
 dominated by till. Raised beach deposits outcrop
 at Inchmore that forms the headland of Drumore
 Bay. The shoreline is vulnerable to storm
 conditions from the north-east.

3. KILSTAY BAY to TERALLY POINT
 NX 128 3/4
 2.7km
 Cliff (< 10)
 Till, raised beach
 Steep-sided beach deposits and till form the
 major deposit over the hinterland of this unit.
 Concrete sea walls have been built to protect the
 coastal road running alongside Kilstay Bay,
 Gennan Point and Terally. The foreshore
 consists of sand and shingle. Rocky outcrops
 occur at Terally Point.
1. CALNESS POINT to LIMPET HALL
NX 148 360
1km
Accreting or stable
An exposed stretch of coastline with a north-easterly aspect. The wide intertidal zone is strewn with boulders intermixed with areas of sand. The HWM consists of banked shingle and well vegetated. The banks above the shore are well vegetated and appear stable.

2. CAIRNGARROCH BAY to DRUMMORE HARBOUR
NX 142 366
1km
Stable
A public road has been defended by a concrete sea wall at Cairngarroch Bay. Gabion baskets and a breakwater have also been implemented at Back Bore and towards the quay in an attempt to trap sand and shingle. These works appear to have stabilised erosion in the short term.

3. DRUMMORE HARBOUR
NX 136 368
0.5km
Accreting or stable
Drummore Harbour is accreting with sand and silts due possibly to lack of use and sediment entrainment.

4. DRUMMORE BAY to CLASHWANNON
NX 134 372
0.4km
Definitely eroding
A concrete sea wall and Gabion baskets have been constructed to protect the former a former coast road. It has been undermined in parts due to storm action and the abrasive effects of boulders that tend to scour the softer clay behind the wall.

5. INCHMORE
NX 133 376
0.4km
Accreting or stable
A concrete sea wall and stone armouring has been constructed and overlooks a wide intertidal area comprising boulders and sandy spits. Shingle is banked up at the HWM and this region appears to be stable for the time being.

6. LOW CURGHE
NX 131 377
0.2km
Definitely eroding
With an exposed north-easterly aspect this area of coast is undergoing serious erosion from storm damage. A concrete sea has been displaced and large concrete blocks lie c.10m from the buoys. Some 30m of wall has been breached and in an attempt to consolidate the bank, modern building rubble has been tipped along the foreshore. Mass movement is being accelerated due to the scouring out of the softer material, namely till behind the existing sea wall.

7. KILSTAY BAY to GRENNAN POINT
NX 128 385
1.2km
Accreting or stable
A concrete sea wall protects the coastal road that skirts Kilstay Bay to Grennan Point. The bay has an exposed easterly aspect and its intertidal zone is wide with sand and shingle. Shingle has been banked against the foreshore and this stretch of shore appears to be stable and accreting in parts.
Sites on the Coast Edge & Foreshore

<table>
<thead>
<tr>
<th>Reference</th>
<th>Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX 1413 3688</td>
<td>BACK BORE, DRUMMORE</td>
<td>Fishing Stakes, 19/20th century, Poor, Monitor</td>
</tr>
<tr>
<td>NX 138 368</td>
<td>DRUMMORE</td>
<td>Harbour, 19th century, Good, Nil</td>
</tr>
<tr>
<td>NX 1329 3729</td>
<td>INCHCOILM, DRUMMORE</td>
<td>Old Road & Bridge, 18/19th century, Fair, Monitor</td>
</tr>
<tr>
<td>NX 1292 3792</td>
<td>CURRGLUE BAY</td>
<td>Fishing Stakes, 19/20th century, Poor, Monitor</td>
</tr>
<tr>
<td>NX 1286 3927</td>
<td>GRENNAV</td>
<td>Flar Scatter, 6 - 2 Mill. BC, Fair, Monitor</td>
</tr>
</tbody>
</table>

Sites in the Hinterland

<table>
<thead>
<tr>
<th>Reference</th>
<th>Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX 1520 3565</td>
<td>CALNESS POINT</td>
<td>Pillbox, Mid 20th century, Good, Nil</td>
</tr>
<tr>
<td>NX 1507 3567</td>
<td>CALNESS POINT</td>
<td>Pillbox, Mid 20th century, Good, Nil</td>
</tr>
<tr>
<td>NX 1506 3564</td>
<td>CALNESS POINT</td>
<td>Signalling Tower, Mid 20th century, Good, Nil</td>
</tr>
<tr>
<td>NX 1361 3674</td>
<td>SHIP INN, DRUMMORE</td>
<td>Hotel, 18/19th century, Good, Nil</td>
</tr>
<tr>
<td>NX 1365 3674</td>
<td>MILL ST, DRUMMORE</td>
<td>Store, 19th century, Good, Nil</td>
</tr>
<tr>
<td>NX 1368 3671</td>
<td>DRUMMORE MILL</td>
<td>Watermill, 19th century, Good, Nil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX 137 367</td>
<td>WYLLIE’S MILL, DRUMMORE</td>
<td>Mill, Mid 19th century, Good, Nil</td>
</tr>
<tr>
<td>NX 1372 3670</td>
<td>DRUMMORE</td>
<td>Flot Scatter, 6-2 Mill. BC, Uncertain, not visited, Nil</td>
</tr>
</tbody>
</table>
<| NX 1270 3810 | KILLSTAY | Standing Stone, Monument, 3rd & 2nd Mill. BC, Good, Nil |
| NX 128 392 | GRENNAV | Rig & Furrow, 2nd Mill. AD, Good, Nil |
Hinterland Geology and Coastal Geomorphology: The hinterland geomorphology consists mainly of well formed raised shorelines which are sub-parallel to the shore. Typically these deposits contain layers of sand, gravel and boulders that exhibit a moderate degree of stratification. Fluvio-aeolian sands and gravel occur at Terally Bay. The shoreline geomorphology consists of a fairly irregular shoreline forming bays at the aforementioned Terally Bay and New England Bay. The beach is mostly sand with shingle banked at the HWM. Greywacke rock assigned to the Wenlock Series outcrops along the shore at Terally point and between Logan Mills and Longrigg Plantation (Unit 3).

Erosion Class: The foreshore is classified as accreting or stable from Grennan Point to Myrock Point (Unit 1) as shingle and sand form a noticeable berm at the HWM. New England Bay has a concrete sea wall and is protecting the sandy foreshore that is stable. The wide foreshore up to Logan Mills is stable and consists of shingle, boulders and sandy spits. From Logan Mills to Longrigg Plantation (Unit 3) the foreshore is dominated by outcropping greywacke rock platform which has been scoured into a series of shallow gullies. However due to the resilience of this material erosion is considered to be very slow.

Built Heritage & Archaeology: The archaeology of this section is concentrated in two clusters; one consisting of a standing stone, a long cist cemetery, a possible motte and a disused coal store at Terally Bay, and another group of sites at Logan Mills consisting of a sawmill, a windmill, a boat shed and a boat house. The first group includes sites ranging in date from prehistory to the nineteenth century, while the second group has a much tighter range of dates from the seventeenth to the twentieth centuries. The coastal sites are generally slowly abrating whether through natural deterioration or coastal erosion. The sites in the hinterland, which include several disused buildings, are suffering from natural deterioration.
Map 3: Hinterland Geology and Coastal Geomorphology

1. KILSTAY BAY to TERALLY POINT
NX 128 394
2.7km
Cliff (<10)
Till, raised beach
Steep raised beach deposits and till form the major deposit over the hinterland of this unit. Concrete sea walls have been built to protect the coastal road running alongside Kilstay Bay, Greenvale Point and Terally. The foreshore consists of sand and shingle. Rocky outcrops occur at Terally Point.

2. TERALLY BAY to LOGAN MILLS
NX 121 420
3.4km
Cliff (<5m)
Raised beach and till
The hinterland of this unit consists of raised beach and till deposits with a low cliff edge. The foreshore has been protected at Terally Bay by a sea wall. The intertidal area is wide in parts with clefted greywacke exposed at Terally Point. Terally Bay and New England Bay beaches are strewn with poorly sorted boulders. Other areas within the bays are covered with sand. Boulders and sand continue to Portacree.

3. LOGAN MILLS to LONGRIGG
PLANTATION
NX 117 449
1.3km
Low edge (<5m)
Raised beach & mainly rock platform
Raised beach deposits dominate the hinterland of this unit. The foreshore consists of clefted steeply dipping greywacke platforms. These shelves of the vertical in places.
MAP 3: EROSION

1. GRESNAN POINT to MYROCH POINT
 NX 127 400
 2.8km
 Accreting or stable
 This unit has a wide intertidal zone that consists of boulders, cobbles and sand. There is evidence of accretion as shingle is banking up at the HWM. This is noticeable at Pati Sands (NX 128 396) and at Terrally Bay (NX 124 410). A concrete sea wall protects the coast road skirting Terrally Bay. Shingle is now banking in front of it.

2. NEW ENGLAND BAY to PORTACREE
 NX 123 426
 2km
 Stable
 A concrete sea wall protects New England Bay which is predominately sandy and strewn with boulders. The stretch of coast beyond Bulgowan Point is a wide intertidal area with a mixture of boulders and sandy spits. In general terms the coastline appears to be stable and accreting in other parts.

3. LOGAN MILLS to LONGRIGG
 PLANTATION
 NX 116 440
 1.5km
 Eroding or stable
 This unit has an exposed easterly aspect and consists of outcropping cleaved and dipping greywackes. Erosion is occurring albeit very slowly as the base of the rock is eroded.
<table>
<thead>
<tr>
<th>Sites on the Coast & Foreshore</th>
<th>Sites in the Finterland</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX 1230 4111</td>
<td>NX 1225 4110</td>
</tr>
<tr>
<td>TERALLY BAY</td>
<td>TERALLY</td>
</tr>
<tr>
<td>Coal Store</td>
<td>Possible Motte</td>
</tr>
<tr>
<td>Statutory Listed Building</td>
<td>12 & 15th century</td>
</tr>
<tr>
<td>19th century</td>
<td>Fair</td>
</tr>
<tr>
<td>Fair</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NX 145W 8</td>
<td>NX 1227 4123</td>
</tr>
<tr>
<td>NEW ENGLAND BAY</td>
<td>TERALLY</td>
</tr>
<tr>
<td>Fish-trap</td>
<td>Long Cist Cemetery: Flints</td>
</tr>
<tr>
<td>Uncertain</td>
<td>1 7/26th Mill. AD</td>
</tr>
<tr>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Monitor</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NX 1167 4392</td>
<td>NX 1228 4127</td>
</tr>
<tr>
<td>LOGAN MILLS</td>
<td>TERALLY</td>
</tr>
<tr>
<td>Boat Noost</td>
<td>Standing Stone</td>
</tr>
<tr>
<td>Uncertain</td>
<td>Scheduled Ancient Monument</td>
</tr>
<tr>
<td>Poor</td>
<td>3rd & 2nd Mls. BC</td>
</tr>
<tr>
<td>Monitor</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NX 1122 4492</td>
<td>NX 1155 4361</td>
</tr>
<tr>
<td>CHAPEL RGOSSAN BAY</td>
<td>LOGAN MILL</td>
</tr>
<tr>
<td>Breakwater</td>
<td>Sawmill</td>
</tr>
<tr>
<td>Uncertain</td>
<td>Statutory Listed Building</td>
</tr>
<tr>
<td>Poor</td>
<td>Early 19th century</td>
</tr>
<tr>
<td>Monitor</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NX 1163 4376</td>
<td>NX 1152 4379</td>
</tr>
<tr>
<td>LOGAN MILL</td>
<td>LOGAN MILL</td>
</tr>
<tr>
<td>Fishing Store & Boat Shed</td>
<td>Windmill</td>
</tr>
<tr>
<td>Statutory Listed Building</td>
<td>Statutory Listed Building</td>
</tr>
<tr>
<td>Late 19th century</td>
<td>17th century</td>
</tr>
<tr>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Nil</td>
<td>Nil</td>
</tr>
</tbody>
</table>

SOLW3/3120/20.12.97 34 of 850 CFA
MAP 4: CHAPEL ROSSEN TO SANDHEAD

Hinterland Geology and Coastal Geomorphology: The hinterland geology is the same as that on the preceding map. Raised beach deposits commonly of sand and shingle and gravel occur from Chapel Rossan Bay (Unit 1) to Clay Hill (NX 018 460). In parts these form crescent shaped ridges. Fluvialglacial gravel are recorded at Alwibbie Bridge and Sandhead Bay. The foreshore up to Sandhead Bay is mainly sand with shingle banked at the HWM. Poorly sorted boulders and sand bars occur between the HWM and LWMS intertidal zone.

Erosion Class: An extensive concrete sea walls protects a public road at Chapel Rossan Bay and Alwibbie Bridge. Chapel Rossan bay is stable. The coastline beyond this point is eroding or stable and prone to scouring and wave induced mass-movement. This is giving rise to bare patches of sand. However shingle banks at the HWM are affording some stability for much of this region of coastline.

Built Heritage & Archaeology: The archaeology of this section is thinly distributed and consists solely of eighteenth, nineteenth and twentieth century monuments. These include fishing stakes and a boat noost on the foreshore, and a dyemill, gardens and an inscribed slab in the hinterland. None of the sites is threatened with the exception of the boat noost at Sandhead Bay (NX 1024 4888) which is suffering from tidal abrasion.
1. LONGRIGG PLANTATION to north of CLAYHILL
NX 110 464
2.5km
Cliff (< 5m)
Raised beach and marine drift
This unit contains Chapel Rossan and Drumtranae Bay. The hinterland behind these features are marine derived raised beach deposits.

2. CLAYHILL to SANDHEAD BAY
NX 104 485
0.3km
Cliff (< 5m)
Mainly raised beach and glacial sand
The foreshore consists of sand and poorly sorted boulders intermixed with areas of clean sand.
The hinterland comprises glacial sands and gravels with raised beaches present towards Sandhead Bay.
MAP 4: BUILT HERITAGE AND ARCHAEOLOGY

<table>
<thead>
<tr>
<th>Sites on the Coast & Foreshore</th>
<th>Sites in the Hinterland</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX 1024 4888</td>
<td>NX 1090 4550</td>
</tr>
<tr>
<td>SANDHEAD BAY</td>
<td>ARDWELL HOUSE</td>
</tr>
<tr>
<td>Boat Nosed</td>
<td>Gardens</td>
</tr>
<tr>
<td></td>
<td>18/19/20th centuries</td>
</tr>
<tr>
<td></td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Nil</td>
</tr>
<tr>
<td>NS 0988 4950</td>
<td>NX 1082 4604</td>
</tr>
<tr>
<td>SANDHEAD BAY</td>
<td>LODGE HOUSE, ARDWELL MAINS</td>
</tr>
<tr>
<td>Fishing Net Stakes</td>
<td>"Murder" Stone Slab</td>
</tr>
<tr>
<td></td>
<td>18/19th century</td>
</tr>
<tr>
<td></td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Nil</td>
</tr>
<tr>
<td>NX 14NW 13</td>
<td>NX 1059 4751</td>
</tr>
<tr>
<td></td>
<td>ALWHIBBLE</td>
</tr>
<tr>
<td></td>
<td>Dyemill</td>
</tr>
<tr>
<td></td>
<td>18/19th century</td>
</tr>
<tr>
<td></td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Nil</td>
</tr>
</tbody>
</table>
MAP 5: SANDHEAD TO WEST FREUGH

Hinterland Geology and Coastal Geomorphology: The hinterland geomorphology at this particular region of the coast is dominated by marine deposits. At the village of Sandhead the backshore region is flat and consists of sand and shingle. This gives way to a well developed 'hindshore' dune system known as Torrs Warren (designated as a SSSI) at the head of Lucie Bay. A series of ridged dunes overlook a wide sandy beach.

Erosion Class: The foreshore at Sandhead village is accreting and stable as shingle is banked up at the HWM. Towards Sandmill Farm (Unit 2) the beach is stable. East of Clayshant the dunes overlooking the beach are suffering from minor erosion due to the outflow of a small burn. Single and Hanson (1994) mention that the dune system is exceptionally stable over most of the area owing to near continuous vegetation cover and the removal of livestock. However, blow-out caused by rabbit colonisation could promote erosion of the dunes facing the sea.

Built Heritage & Archaeology: Only one archaeology site is situated in this section. It is a mid-twentieth century bombing target and is not threatened.
Map 5: Hinterland Geology and Coastal Geomorphology

1. SANDHEAD to CARISBROOKE
CARAVAN PARK
NX 210 505
0.5km
Low edge (< 5m)
Mainly marine sands and gravels
Marine derived sands and gravels consolidated by
sand banks. The foreshore is mainly sand and
poorly sorted pebbles and shingle.

2. LUCE SANDS M.O.D. FIRING RANGE
NX 142 542
9km
Low edge (< 5m)
Sandy dunes
The head of Luce Bay is a well formed
"blindsloop" dune system with crescent shaped
sand ridges. The foreshore is a sand with shingle
in parts.
1. SANDHEAD BAY to CARISBROOKE
NX 210 303
1.2km
Accreting or stable
This unit appears to be stable with accretion of shingle against a grassy foreshore.

2. CARISBROOKE to south of CLAYSHANT FORD
NX 211 51b
1.8km
Stable
This unit forms part of the western reach of Luce Sands and consists of a fairly wide intertidal zone (c.0.8km) of sand. The backslope region consists of vegetated sand dunes.

3. CLAYSHANT
NX 113 524
0.3km
Eroding or stable
This unit consists of sand dunes that are eroding due to deflation and wave erosion from a burn that flows past Clayshant farm. The loss of sand is the backslope region appears to be severe in parts.

4. CLAYSHANT to RINGDOO SANDS
NX 140 540
7.5km
Stable
This unit forms the head of Luce Sands and is a fairly uniform stretch of coastline comprising stable sand dunes stabilised by dense bracken and heather. The wide intertidal zone is sandy and boulder free.
<table>
<thead>
<tr>
<th>Sites on the Coast & Foreshore</th>
<th>Sites in the Hinterland</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX 1234 5297</td>
<td>None</td>
</tr>
<tr>
<td>LUCI SANDS</td>
<td></td>
</tr>
<tr>
<td>Deserted Target Base</td>
<td></td>
</tr>
<tr>
<td>Uncertian</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Nil</td>
<td></td>
</tr>
</tbody>
</table>
MAP 6: WEST FREUGH TO WHITECROOK

Hinterland Geology and Coastal Geomorphology: This region of the coast is a continuation of the long sand dune system of Torrs Warren shown on the previous map. The dune system ends at Ringdoo Sands where the Piltonon Burn flows into Luce Bay. The edge of the burn is dominated by salt and brackish marsh vegetation. The intertidal area in front of the dunes consists of a wide sandy beach known as Luce Sands.

Erosion Class: No erosion was recorded on this stretch of the dunes and conditions are considered to be stable. From Ringdoo Sands to Whitecrook (Unit 2), (via Piltonon Bridge) the banks along burn are eroding only slowly due to the density of marsh vegetation.

Built Heritage & Archaeology: The archaeology of this section includes a range of prehistoric, early historic and medieval sites and findspots located in the extensive sand dune system of Torrs Warren. At the moment the dune system is under thick vegetation and is thus extremely stable, with only a few isolated spots of exposed sand, due to rabbit action, open to wind erosion. Many of the sites represent chance findspots, poorly provenanced (Williams, 1977, 77) and are only located to a four figure grid reference.
Map 6: Hinterland Geology and Coastal Geomorphology

1. LOICE SANDS M.O.D. FIRING RANGE
NX 142 542
9km
Low edge (< 5m)
Sand dunes
The head of Loice Bay is a well formed 'hindshore' dune system with crescent shaped sand ridges. The foredune is a sand with shingle in parts.

2. RINGDOO SANDS to south of WHITE CROOK FARM
NX 142 542
1km
Low edge (< 5m)
Saltmarsh backed by sand dunes
Sheltered mouth of the Flinton Burn. Alluvium underlies saltmarsh with a planted frontal sand dune system in the hinterland.
4. CLAYSHANK to RINGDOO SANDS
NX 142 540
7.5km
Stable
This unit forms the head of Luce Sands and is a fairly uniform stretch of coastline comprising stable sand dunes stabilised by dense reedbed and heather. The wide intertidal zone is sandy and boulder free.

2. RINGDOO SANDS to PILTANTON BRIDGE
NX 160 560
4km
Eroding or stable (estimate only)
The lower tidal stretch and upper reach of the Pilantoon Burn could not be surveyed due to the dangerous and boggy nature of the marsh.
<table>
<thead>
<tr>
<th>Sites on the Coast & Foreshore</th>
<th>Sites in the Hinterland</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NX1SSW 3</td>
<td>NX1SSW 26</td>
</tr>
<tr>
<td>NX 1 5</td>
<td>NX 1 5</td>
</tr>
<tr>
<td>LUCE SANDS</td>
<td>LUCE SANDS</td>
</tr>
<tr>
<td>Bronze age, pottery, flints &</td>
<td>Bronze Pin</td>
</tr>
<tr>
<td>miscellaneous finds spots</td>
<td>5 & 6th centuries AD</td>
</tr>
<tr>
<td>3rd Mill. BC</td>
<td>Uncertain; not located</td>
</tr>
<tr>
<td>onwards</td>
<td>Nil</td>
</tr>
<tr>
<td>Uncertain; not located</td>
<td></td>
</tr>
<tr>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>NX1SSW 13</td>
<td></td>
</tr>
<tr>
<td>NX 1 5</td>
<td></td>
</tr>
<tr>
<td>LUCE SANDS</td>
<td></td>
</tr>
<tr>
<td>Roman Key Findspot</td>
<td></td>
</tr>
<tr>
<td>2nd century AD</td>
<td></td>
</tr>
<tr>
<td>Uncertain; not located</td>
<td></td>
</tr>
<tr>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>NX1SSW 16</td>
<td></td>
</tr>
<tr>
<td>NX 1 5</td>
<td></td>
</tr>
<tr>
<td>LUCE SANDS</td>
<td></td>
</tr>
<tr>
<td>Roman Cow Findspot</td>
<td></td>
</tr>
<tr>
<td>4th century AD</td>
<td></td>
</tr>
<tr>
<td>Uncertain; not located</td>
<td></td>
</tr>
<tr>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>NX1SSW 24</td>
<td></td>
</tr>
<tr>
<td>NX 1 5</td>
<td></td>
</tr>
<tr>
<td>LUCE SANDS</td>
<td></td>
</tr>
<tr>
<td>Pottery & Flints</td>
<td></td>
</tr>
<tr>
<td>2nd Mill. BC</td>
<td></td>
</tr>
<tr>
<td>Uncertain; not located</td>
<td></td>
</tr>
<tr>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>NX1SSW 25</td>
<td></td>
</tr>
<tr>
<td>NX 1 5</td>
<td></td>
</tr>
<tr>
<td>LUCE SANDS</td>
<td></td>
</tr>
<tr>
<td>Bronze Brooch</td>
<td></td>
</tr>
<tr>
<td>Uncertain</td>
<td></td>
</tr>
<tr>
<td>Uncertain; not located</td>
<td></td>
</tr>
<tr>
<td>Nil</td>
<td></td>
</tr>
</tbody>
</table>
MAP 7 DROUGNDIL TO KILFILLAN POINT

Hinterland Geology and Coastal Geomorphology: This section of the coastline alters from a region dominated dune systems to the start of the eastern side of Luce Bay. From Whitecrook to St Helena Island the coastline is dominated by marine sands and gravels. These contain a beach that is a mixture of poorly sorted alluvial silts, sands and gravels derived from the Pittanton Burn. From St Helena to Ballingelach fluvioglacial sands and gravels outcrop alongside the Water of Luce.

Erosion Class: Between Whitecrook and St Helena Island the shoreline is very wide incised by river channels at low tide. The coastal edge however appears to be stable.

Built Heritage & Archaeology: See Map 6.
1. LUCE SANDS M.O.D. FIRING RANGE
NX 142 542
9km
Low edge (< 5m)
Sand dunes
The head of Luce Bay is a well formed
“hindsnare” dune system with crescent shaped
sand ridges. The foreshore is a sand with shingle
in parts.

2. RINGDOO SANDS to south of WHITE
CROOK FARM
NX 142 542
1km
Low edge (< 5m)
Saltmarsh backed by sand dunes
Sheltered mouth of the Pitlen Burn. Alluvium
underlies saltmarsh with a planted foredune sand
dune system in the hinterland.

3. South of WHITECROOK to St HELENA
ISLAND
NX 182 558
3km
Low edge (< 5m)
Marine deposits
The low ground includes a wide stretch of
undulating marine sands and gravels. The low
intertidal area contains a mixture of alluvium mud
interspersed with sand/shingle and boulders.

4. St HELENA ISLAND to south of No.1
HOLDING
NX 195 560
2km
Low edge (< 5m)
Raised beach/sands and gravel/alluvium
Mouth of the Water of Luce. The river cuts along
the Orlock Bridge Fasti and consists of glacial
sands and gravels with alluvial deposits along its
banks. Undulating raised beach deposits make up
the shore edge. The intertidal area is low and
consists of clear sand and gravel beds.
1. PILTANTON BURN to ST HELENA ISLAND
 NX 180 559
 2.5km
 Eroding or stable
 This unit consists of a wide intertidal area (c. 1 km
 at MLWS) that is mainly sand and shingle. The
 fore-shore margin in front of the dune system
 appears to be stable due to the density of the
 vegetation cover.

2. ST HELENA ISLAND to KILFILLAN POINT
 NX 201 547
 1.7km
 Eroding or stable
 This unit has an exposed south westerly aspect
 and contains an indented rocky shoreline with
 shingle at the HWM. This region appears to be
 eroding only slowly.
<table>
<thead>
<tr>
<th>Sites on the Coast & Foreshore</th>
<th>Sites in the Histerland</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>See Map 6</td>
</tr>
</tbody>
</table>
MAP 3: KILFILLAN POINT TO CRAIG LODGE

Hinterland Geology and Coastal Geomorphology: This region of the coastline is very exposed forming the eastern side of Luce Bay. The coast is composed of noticeably harder rocks with a steeply incised cliff-edge. From Kildiffian Point to Slackmore point the hinterland is mostly till over visible rock. However, a small parcel of fluvioglacial sands and gravels outcrop at Stairhaven Bay. The shoreline is wide at Stair Haven and becoming irregular towards the east which is backed by precipitous cliffs and exposed rock platform. Deep gullies are common and sea caves also occur.

Erosion Class: From Kildiffian Point to Craig Lodge the coastline is considered to be eroding owing to the basal scouring along the softer siltstone folds within the cliff. Cliff retreat is occurring at an unknown rate caused by weathering of the overlying till which is exposed to wind, rain and spray. The foreshore at Stairhaven Bay is eroding badly, especially alongside a concrete sea wall where boulders and gravel are falling out of the section. The low intertidal area is scoured in parts resulting in bare patches where smaller boulders have been removed.

Built Heritage & Archaeology: This section has a high site density clustered around Stairhaven Bay. Most of the sites relate to the nineteenth century when the bay served as a small working port (Graham, 1979, 64-65). Two sites belong to the later prehistoric period however; Leigh Sinning promontory fort and Stairhaven Broch. Stairhaven broch, one of only three recognised brochs in Galloway, was ‘excavated’ in the 1970s; an event which removed many of the tumbled stones protecting the surviving structure from erosion (Yates, 1983, 95). Consequently the structure of Stairhaven broch is more vulnerable now, particularly from storm damage. All the sites situated on the coastal edge are suffering from severe to fair coastal erosion and storm damage, particularly in Stairhaven Bay, and monitoring is recommended. In relation to the promontory fort of Leigh Sinning, a more significant threat from animal and farming activity exists.
1. South of No1 HOLDING to STAIRHAVEN BAY
NX 205 544
2km
Cliff (> 10m) and low edge (< 5m) at Stairhaven Bay
Mainly shallow till and drift overlying rock
Broken rocky coastal edge overlain by till and drift deposits. Glacial sands and gravels outcrop at Stairhaven Bay. The intertidal area is wide (c.80m) and consists of boulder and shingle beds intermixed with sand bars.

2. STAIRHAVEN to SLACKMORE POINT
NX 213 525
3km
Cliff (> 10m)
Mainly shallow till and drift overlying rock
The hinterland consists of precipitous greywacke cliffs with a shallow till cover. The foreshore is outcropping rock platform.

3. SLACKMORE POINT to east of CRAIGNARGET
NX 245 515
3km
Low edge (< 10m)
Marine sands and gravels with till east of Craignarget
The exposed hinterland consists of marine sands and gravels. The foreshore is wide with an admixture of poorly sorted boulders and sandy spits.
1. ST HELENA ISLAND to KILFILLAN POINT
NX 201 547
1.7km
Eroding or stable
This unit has an exposed south westerly aspect and contains an indented rocky shoreline with shingle at the HWL. This region appears to be eroding only slowly.

2. KILFILLAN POINT to east of STAIRHAVEN BAY
NX 205 540
2.8km
Definitely eroding
This unit has an irregular cliff edge and an intertidal zone that is extremely wide (current SLWM is c.0.2km) consisting of boulders and sandy bars. Some sand accretion is occurring at the mouth of a small tarn that enters the bay. Armour stone and Rip-Rap wall has been used with limited success as erosion is occurring either side of these works. More serious erosion is occurring to the east of a ruined pier. The 1946 vertical aerial photograph shows that the pier was intact. It has since collapsed and wave attack is accelerating erosion immediately east of the pier. Cliff edge erosion now stands in excess of 3m.

3. STAIRHAVEN BAY east to SLACKMORE POINT
NX 219 530
2.8km
Eroding or stable
This region of coastline consist of irregular indented greywacke cliffs. Erosion is occurring along the deep gullies and especially along faults and fractures. It is difficult to estimate cliff-edge retreat but it is estimated to be slow.

3b. AUCHENMAIG BAY
NX 235 518
1.2km
Accreting or stable
This bay has a wide intertidal zone consisting of overcropping cleared greywacke and wide areas of sand and shingle. The exposed promontory headland at Slackmore Point is precipitous and wave abraded rock fall is evident at its base. Poorly sorted shingle is banking up at the current HWL in the centre of the bay which is defended by a concrete sea wall. The shingle is being deposited by longshore drift on a predominately easterly fetch.
Sites on the Coast Edge & Foreshore

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| NX 2044 5358 | STAIR HAVEN BAY
Possible Wooded Pier/Fish Rack
Uncertain
Poor
Survey & Monitor |
| NX 2055 5365 | STAIR HAVEN BAY
Stone & Rubble Pier
19th century
Poor
Survey & Monitor |
| NX 2069 5361 | STAIR HAVEN BAY
Ruined Harbour House
19th century
Fair
Survey & Monitor |
| NX 2079 5335 | STAIR HAVEN
Broch
Scheduled Ancient Monument
2nd century BC - 2nd century AD
Fair
Survey & Monitor |
| NX 2147 5219 | LAIGH SINNESS
Promontory Fort
Scheduled Ancient Monument
1st Mill. BC/AD
Fair
Monitor |

Sites in the Hinterland

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| NX 2039 5405 | KILEILLAN POINT
Query
Uncertain
Good
Nil |
| NX 2045 5370 | STAIR HAVEN
Ruined Warehouse
Statutory Listed Building
Mid 19th century
Good
Nil |
| NX 2108 5304 | SINNESS
Wooden Post
1920s century
Good
Nil |
| NX 2136 5244 | LAIGH SINNESS
FIELD CABIN
Uncertain
Good
Nil |

SOLW/3120/20.12.97
74 of 490
CFA
MAP 9: DOVE CAVE TO GARHEUGH

Hinterland Geology and Coastal Geomorphology: This stretch of coastline is exposed to south westerly winds and changes dramatically from a high cliffs to a hinterland dominated by raised beach deposits. The break in the geology occurs at Auchenmaig Bay. From this area east to Garheugh the hinterland becomes dominated by raised beaches. These run sub-parallel to the foreshore. Where the deposits are exposed they are seen to consist of stratified sands and reasonably well sorted gravels. Till deposits occur east of Craigarnet. The foreshore in front of the Cock Inn public house is protected by a sea-wall. The intertidal zone is fairly wide with sand and shingle banking up at the SHWM. Towards Garheugh, low rock platform outcrops on the foreshore.

Erosion Class: The occurrence of a fairly wide berm of shingle and sand at the HWM shows that this section of the coast is accreting and stable at the present.

Built Heritage & Archaeology: (NONE)
1. STAIRHAVEN to SLACKMORE POINT
 NX 233 525
 3km
 Cliff (> 10m)
 Mainly shallow till and drift overlying rock
 The hinterland consists of precipitous greywacke
 cliffs with a shallow till cover. The foreshore is
 outcropping rock platform.

2. SLACKMORE POINT to east of
 CRAIGNARGET
 NX 285 515
 3km
 Cliff (< 10m)
 Marine sands and gravels with till east of
 Craignarget
 The exposed hinterland consists of marine sands
 and gravels. The foreshore is wide with an
 admixture of poorly sorted boulders and sandy
 spits.

3. East of CRAIGNARGET to GAREUGH
 PORT
 NX 265 590
 1.5km
 Cliff (>10m)
 Raised beach
 Raised beach deposits run sub-parallel to the
 foreshore. The shoreline is wide with sand and
 poorly sorted boulders.
MAP 9: EROSION

1. HEUGH PARK to ALTICRY BRIDGE
NX 315 515
3.9 km
Stable or accreting
This unit has a very wide exposed foreshore
consisting of jutting rocks, boulders, sandy
spits and shingle banks. The backshore is well
vegetated and appears to be stable.
<table>
<thead>
<tr>
<th>Sites on the Coast Edge & Foreshore</th>
<th>Sites in the Hinterland</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Site location</td>
<td>Symbol</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>NGR col - sg</td>
<td>Round</td>
</tr>
<tr>
<td>NX 163 308</td>
<td>Open</td>
</tr>
<tr>
<td>SMIEX - sg</td>
<td>Round</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SMUK35 - sg</td>
<td>Round</td>
</tr>
<tr>
<td>NX 13 SW 17</td>
<td>Small</td>
</tr>
<tr>
<td></td>
<td>Round</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area</td>
</tr>
</tbody>
</table>

MAP NO. 9
MAP 10: CRAIGNARGET TO CHANGUE BRIDGE

Hinterland Geology and Coastal Geomorphology: The hinterland along this region of coastline contains impressive raised beaches, particularly between Comwall Heugh and Changhe Heugh. The raised beach deposits rise above 10m and are indented in parts. The foreshore is rocky to the west of Garheugh Port (NX 499500). South-east of this location the foreshore becomes much narrower and is dominated by poorly sorted boulders and sand. Shingle is banking up at the SHWM.

Erosion Class: This region of the coast is accreting and considered to be stable based on the occurrence of shingle at the SHWM. At Allicrey Bridge a concrete sea wall has been placed to protect a private parking area. Shingle is piling up against the wall and therefore this unit (Unit 1) is considered to be stable.

Built Heritage & Archaeology: This section has a wide distribution of sites ranging in date from early prehistory through early medieval to the post-medieval period. Three landing places and Chapel Finian can be found on the coastal edge. Inland a newly identified possible prehistoric kerbed cairn and axe hammer findspot, a medieval building, and post-medieval structures and field walls are located. The majority of the inland sites were not located in the field survey due to the thick vegetation cover of the area and therefore the state of preservation could not be ascertained. None of the coastal sites are threatened by coastal erosion.
1. East of CRAIGNARGET to GARHEUGH PORT
NX 265 500
1.5km
Cliff (>10m)
Raised beach
Raised beach deposits run sub-parallel to the foreshore. The shoreline is wide with sand and poorly sorted boulders.

2. GARHEUGH PORT to MILTON POINT
NX 305 470
3.5km
Cliff (> 10m)
Raised beach/marine sands and gravels
Spectacular indented raised beaches run the length of this unit. The foreshore is consists of poorly sorted boulders intermixed with sand bars.
1. ALTICRY BRIDGE
NX 273 496
0.3km
Stable
Stone walls are employed to protect a private parking area. This has led to shingle accretion against the base of the wall. The foreshore appears to be afforded further stability by vegetation cover.

2. ALTICRY BRIDGE to MILTON POINT
NX 284 462
5km
Accreting or stable
This unit has a uniform and unchanging coastline for most of its length and has a wide intertidal zone that contains large areas of poorly sorted boulders, outcropping rock, sandy spits and shingle bars. The foreshore is banished with shingle at the current HWM which suggests that this section is stable at the present.
MAP 11: CHANGUE BRIDGE TO BOTTLE HOLE BRIDGE

Hinterland Geology and Coastal Geomorphology: This region of the coast is exposed and contains spectacular raised beaches that rise to over c.20 metres near West Bar (NX 320 462). From this location the crest of the raised beaches become more irregular in outline. The foreshore is wide consisting of shingle at the HWMS with poorly sorted boulders, cobbles and sands, with occasional sand bars down to the MLWS.

Erosion Class: The wide intertidal zone has a south-westerly aspect and a wide foreshore. Shingle is banked up at the current HWMS along most of this region of the coast which is considered to be accreting and stable. A small headland called Philip and Mary (NX 324 457) is wider on its eastern side, probably due to the dumping effect of wave energy. This is causing sand and shingle to accrete to the east of the headland.

Built Heritage & Archaeology: This section includes only three sites, all located in the hinterland. They comprise a possible rectilinear enclosure identified from aerial photographs, a nineteenth century watermill and a track of uncertain date. All three sites survive in a fair condition and do not require monitoring.
1. GARHEUGH PORT to MILTON POINT
 NX 305 479
 3.5km
 Cliff (> 0m)
 Raised beach/marine sands and gravel
 Spectacular indented raised beaches run the
 length of this unit. The foreshore consists of
 poorly sorted boulders intermixed with sand bars.

2. MILTON POINT to PORT WILLIAM
 NX 333 450
 3.2km
 Cliff (> 10m)
 Mainly raised beach and relict shoreline
 Raised beaches run the length of this unit. These
 tend to be steeper towards West Bar (NX320452)
 than at Kilistrue Bridge (NX312454) where a
 wave cut platform occurs on the 10m contour.
 The foreshore is very wide containing sand bars,
 shingle beds and large poorly sorted boulders.
MAP 11: EROSION

1. ALICRY BRIDGE to MILTON POINT
NX 284 482
5km
Accreting or stable
This unit has a uniform and unchanging coastline for most of its length and has a wide intertidal zone that contains large areas of poorly sorted boulders, outcropping rock, sandy spits and shingle bars. The foreshore is banked with shingle at the current HWM which suggests that this section is stable at the present.

2. MILTON BRIDGE to north of BOTTLE HOLE BRIDGE
NX 330 453
2.5km
Accreting or stable
A wide intertidal zone contains boulders, sand and shingle. Shingle is banked up at the current HWM for most of length of this unit. A small headland called Philip and Mary (NX 334) is wider on the eastern side probably due to the damping effect of wave energy that has caused deposition of marine deposits directly behind the
Sites on the Coast Edge & Foreshore

None

<table>
<thead>
<tr>
<th>Sites in the Hinterland</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX 3016 4739</td>
</tr>
<tr>
<td>CHANGUE HUGH</td>
</tr>
<tr>
<td>Possible Rectilinear Enclosure</td>
</tr>
<tr>
<td>Uncertain</td>
</tr>
<tr>
<td>Good</td>
</tr>
<tr>
<td>Nil</td>
</tr>
<tr>
<td>NX 3153 4618</td>
</tr>
<tr>
<td>MILTON BRIDGE</td>
</tr>
<tr>
<td>Watermill</td>
</tr>
<tr>
<td>19th century</td>
</tr>
<tr>
<td>Good</td>
</tr>
<tr>
<td>Nil</td>
</tr>
<tr>
<td>NX 3317 4525</td>
</tr>
<tr>
<td>KILLANTRAE BRIDGE</td>
</tr>
<tr>
<td>Track</td>
</tr>
<tr>
<td>Uncertain</td>
</tr>
<tr>
<td>Good</td>
</tr>
<tr>
<td>Nil</td>
</tr>
</tbody>
</table>
MAP 12: CLONE POINT TO CRAIGENGOUR

Hinterland Geology and Coastal Geomorphology: From Clone Point to Port Whappie the hinterland geomorphology is uniform and consists of raised beach deposits. These become noticeably lower towards Port William and beyond to Port Whappie. From Port Whappie to St Medina’s Well the hinterland drift geology changes over to brecciated (clay-dominant) morainic drift deposits. The coastal geomorphology from Clone Point to Port Whappie is exclusively shingle intermixed with sand. Greywacke and interbedded siltstones outcrop at the head of Monreith Bay and at St Medina’s Well. Here the foreshore is low lying and predominately sand with shingle banked at the current HWM.

Erosion Class: From Bottle Hole Bridge to Port William Harbour the foreshore has been stabilised by the construction of coastal sea defences. The inside of Port William harbour is definitely accreting owing to the low numbers of craft using the harbour. This is noticeable in the lee of a stone breakwater on the west side of the harbour. At Saltoun Point the sea defences are severely eroded and large boulders have been dumped in an attempt to limit further erosion. At Monreith Bay the coastal edge is stable.

Built Heritage & Archaeology: The village of Port William is located in this section and includes many listed buildings, ranging in date from the eighteenth to the twentieth centuries, relating to its role as a working port (Graham, 1979, 61-63). Included amongst the listed buildings are harbour stores, a church, a library, a watermill and the harbour itself. All of the sites survive in good condition. Immediately south of the village is a possible salt pan, identified in the field survey, which is suffering from sea abrasion. Further south in Monreith bay are found boat runs and a fish trap which are eroding to a limited extent. Inland from Monreith Bay is Barsalloch Point promontory fort and a sculptured rock at Knock, Glasserton. These sites are more at threat from animal action, in the former, and human impact in the latter. Monitoring is recommended particularly for the sites on the coastal edge south of Port William.
Map 12: Hinterland Geology and Coastal Geomorphology

1. MILTON POINT to FORT WILLIAM
 NX 331 450
 3.2km
 Cliff (> 10m)
 Mostly raised beach and relict shoreline
 Raised beaches run the length of this unit. These tend to be steeper towards West Bar (NX320 662)
 than at Kilrantrre Bridge (NX233 554) where a wave-cut platform occurs on the 10m contour.
 The foreshore is very wide containing sand bars, shingle beds and large poorly sorted boulders.

2. FORT WILLIAM to FORT WHAPPIE
 NX 344 420
 2.4km
 Low edge (< 10m)
 Marine sand and gravels
 Exposed shoreline with a hinterland comprising of marine sands and gravels. The foreshore is
 wide consisting of shingle at the MHWM with poorly sorted boulders and sand bars down to the
 MLWS mark.

3. FORT WHAPPIE to ST MORDINA'S WELL
 NX 356 410
 1.8km
 Cliff (< 10m)
 Till over visible rock
 The area includes Monreith Bay. The cliffs consist of thin to thick bedded greywacke with
 interbedded siltstones. These are overlain by a shallow drift deposit of till. The foreshore is wide
 and consists of patches of boulders and sand bars. Black rock is a platform of outcropping greywacke.

SOLW317/20/20.12.97 102 of 490 CFA
1. PORT WILLIAM
NX 338 436
1.2km
Accreting or stable
This unit contains Port William seafloor and harbour. The beaches are a mixture of sand and boulders. The inner reach of the harbour is silting up especially in the lee of a stone breakwater wall. Rubble and boulders have been dumped at Salt Pan Point (NX337433) in an attempt to reduce erosion.

2. SALTPAN POINT to BARSALLOCH POINT
NX 343 420
2.5km
Accreting or stable
This unit has an unbroken but exposed coastline and a wide foreshore consisting of sand and shingle intermixed with boulders. Sea defence at the old Creamery include armour stone and Rip Rap. The current HWL is banked with shingle and therefore assessed as stable.

3. MONREITH BAY
NX 354 410
1.0km
Stable
This bay has is partly sheltered by Barslloch Point from prevailing north westerly winds and appears to be stable. The bay has a wide intertidal zone and is mostly of sand and shingle. Shingle is banked against the current HWL. The beach is prograding further offshore where a well sorted shingle bar is now forming.
<table>
<thead>
<tr>
<th>Sites on the Coast Edge & Foreshore</th>
<th>Sites in the Hinterland</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX34SW 20</td>
<td>NX34SW 12</td>
</tr>
<tr>
<td>NX 337 437</td>
<td>MONREITH BAY</td>
</tr>
<tr>
<td>PORT WILLIAM Harbour</td>
<td>Fish Trap</td>
</tr>
<tr>
<td>18/19th century</td>
<td>Uncertain</td>
</tr>
<tr>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>Nil</td>
<td>Survey & Monitor</td>
</tr>
<tr>
<td>NX34SW 16</td>
<td>NX34SW 11</td>
</tr>
<tr>
<td>NX 3579 4368</td>
<td>ST MEDANA’S WELL</td>
</tr>
<tr>
<td>PORT WILLIAM Harbour Store</td>
<td>Spring</td>
</tr>
<tr>
<td>18/19th century</td>
<td>Uncertain</td>
</tr>
<tr>
<td>Good</td>
<td>Not located</td>
</tr>
<tr>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>NX34SW 15</td>
<td>NX34SW 18</td>
</tr>
<tr>
<td>NX 3382 4366</td>
<td>THE BIELD, PORT WILLIAM</td>
</tr>
<tr>
<td>PORT WILLIAM Harbour Store</td>
<td>House</td>
</tr>
<tr>
<td>18/19th century</td>
<td>18/19th century</td>
</tr>
<tr>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>NX34SW 14</td>
<td>NX34SW 19</td>
</tr>
<tr>
<td>NX 3384 4363</td>
<td>PORT WILLIAM Watermill</td>
</tr>
<tr>
<td>PORT WILLIAM Harbour Store</td>
<td>18/19th century</td>
</tr>
<tr>
<td>18/19th century</td>
<td>Good</td>
</tr>
<tr>
<td>Good</td>
<td>Nil</td>
</tr>
<tr>
<td>Nil</td>
<td>NX34SW 1</td>
</tr>
<tr>
<td>NX34SW 20</td>
<td>NX34SE 20</td>
</tr>
<tr>
<td>NX 3372 4310</td>
<td>KNOCK, GLASSERTON</td>
</tr>
<tr>
<td>PORT WILLIAM Salt Pan?</td>
<td>Sculptured Rock</td>
</tr>
<tr>
<td>Uncertain</td>
<td>Good</td>
</tr>
<tr>
<td>Poor</td>
<td>Nil</td>
</tr>
<tr>
<td>Survey & Monitor</td>
<td></td>
</tr>
<tr>
<td>NX 3510 4099</td>
<td>NX34SE 21</td>
</tr>
<tr>
<td>MONREATH BAY Boat Runs</td>
<td>PORT WILLIAM</td>
</tr>
<tr>
<td>Uncertain</td>
<td>ST MEDANA’S WELL</td>
</tr>
<tr>
<td>Fair</td>
<td>Spring</td>
</tr>
<tr>
<td>Survey & Monitor</td>
<td>Uncertain</td>
</tr>
<tr>
<td></td>
<td>Not located</td>
</tr>
</tbody>
</table>

SOLW/3120/20.12.97 106 of 490 CFA
Hinterland Geology and Coastal Geomorphology: This section of the coast includes the exposed promontory headland called the Point of Lagg south-east to Laggan Camp. The promontory headland is covered with morainic drift deposits which give way to till over exposed rock from Truff Care to Point of Cairmdoon. In this region the cliff-edge becomes very incised. Beyond the Point of Cairmdoon, raised beach deposits occur eastwards to Laggan Camp. The foreshore is uniform with sand and poorly sorted boulders for much of this region. Rock platform occurs to the west of the Point of Cairmdoon which overlooks a beach with shingle at the current HWM.

Erosion Class: Point of Lag is both stable with some erosion. East of the Point of Cairmdoon the rocky shore is definitely eroding albeit at a slow rate owing to the resilience of the greywacke outcrop. Further east from this area, the beach has evidence of accretion as shingle is banking up at the current HWM.

Built Heritage & Archaeology: This section includes landing places at Back Bay and Front Bay, a later prehistoric promontory fort also at Back Bay, a medieval church at Kirkmaiden and a disused farmshed at Knockguisha. The church and farmshed are located inland and are not threatened by coastal erosion. The sites situated on the coastal edge, which were identified in the field survey however, are suffering from coastal erosion. It is recommended that both Back Bay promontory fort and Front Bay landing place be surveyed and monitored.
Map 13: Hinterland Geology and Coastal Geomorphology

1. ST MEGENA'S WELL to TRUFF CAVE
 NX 563 396
 0.8km
 Cliff (c 10m)
 Mainly till and blown sand
 This is an exposed promontory headland
 consisting of undulating blown sand with drift
 derived till over the steeper cliff edge. The
 foreshore is predominantly bouldered shingle which
 gives way to extensive boulder beds intermixed
 with sand and marine shell deposits.

2. TRUFF CAVE to POINT OF CAIRNDOON
 NX 373 392
 1km
 Cliff (c 10m)
 Till over exposed rock
 Irregular cliff edge overlain by till. The cliffs
 contain sea-cave and consist of grey-wacken
 interbedded with silty mudstones. The foreshore
 is sandy with poorly sorted boulders and shingle.

3. POINT of CAIRNDOON to PORT OF
 COUNAN
 NX 385 380
 4 km
 Cliff (10m)
 Raised beach with marine sand and gravels
 This exposed region of the coastline contains
 impressive raised beaches formed from Pleistocene
 deposits. The raised beach becomes noticeably
 steeper towards the east (max 61m). A plateau
 exists in front of the beach formed by marine
 sand and shingle. The foreshore is wide and
 contains mainly large boulders, cobbles and
 sand.
1. CRAIGENOUR to TRUFF CAVE
NX 364595
0.8km
Eroding or stable
This unit includes an exposed promontory headland with a wide intertidal area with large boulders and shingle. The shore cliff edge is till and is eroding due to slope failure and accelerated mass-movement.

2. TRUFF CAVE to BROAD MOUTH CAVE
NX 375395
0.8km
Eroding or stable
This region of coastline consists of an irregular deeply incised cliff edge. Boulders derived from cliff falls are being abraded at the base of the cliffs, especially along gullies that have formed as a result of high wave impact. The rate of erosion is hard to predict but it appears to be continuously slow.

3. POINT OF CAIRNDOON to GLEDS NEST
NX 384 380
1.8km
Accreting or stable
This unit consists of a wide inshore zone backed by deep raised beaches. The beach is dominated by shingles that are backed up at the current HW+M suggesting an element of accretion.
<table>
<thead>
<tr>
<th>Sites on the Coast Edge & Foreshore</th>
<th>Sites in the Hinterland</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX 3630 3984</td>
<td>NX33NE 1</td>
</tr>
<tr>
<td>FRONT BAY</td>
<td>NX 3655 3992</td>
</tr>
<tr>
<td>Listed Places</td>
<td>KIRKMAIDEN Church</td>
</tr>
<tr>
<td>Uncertain</td>
<td>Statutory Listed Building</td>
</tr>
<tr>
<td>Poor</td>
<td>10/17th century</td>
</tr>
<tr>
<td>Survey & Monitor</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Nil</td>
</tr>
<tr>
<td>NX33NE 15</td>
<td>NX 3855 3804</td>
</tr>
<tr>
<td>NX 337 394</td>
<td>KNOCKGUISHA</td>
</tr>
<tr>
<td>BACK BAY</td>
<td>Disused Farmshold</td>
</tr>
<tr>
<td>Lending Places</td>
<td>18/19th century</td>
</tr>
<tr>
<td>Uncertain; not visited</td>
<td>Good</td>
</tr>
<tr>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>NX33NE 2</td>
<td></td>
</tr>
<tr>
<td>NX 3856 3932</td>
<td></td>
</tr>
<tr>
<td>BACK BAY</td>
<td></td>
</tr>
<tr>
<td>Promontory Fort</td>
<td></td>
</tr>
<tr>
<td>Scheduled Ancient Monument</td>
<td></td>
</tr>
<tr>
<td>1st Mill. BC/AD</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Survey & Monitor</td>
<td></td>
</tr>
</tbody>
</table>

SOLW/23/12/20/12.97 (14 of 490) CFA
Map 14: LAGGAN CAMP TO ROCK OF PROVIDENCE

Hinterland Geology and Coastal Geomorphology: Raised beach deposits continue in the hinterland as far as Port of Couinan. Eastwards from this region, till overlies exposed rock. The coastline as far as Bloody Neik (NX 419361) is wide and consists of poorly sorted boulders intermixed with sand. Beyond this point the cliff edge is very precipitous and overlies deep gullies between rock platforms. A fault line occurs at Port Castle Bay enclosing the Carghidows Formation characterised by greywackes of the Hawick Group (Stone 1996, 105).

Erosion Class: The foreshore from Laggan Camp south-east to Port Castle is wide and appears to be stable as there are noticeable banks of shingle at the current HWM. This is in all probability being brought up to the location as a result of the low horizontal gradient down to the LWMS. This region of coast has a south westerly aspect and is exposed to wave induced mass movement. However at the present this particular section of the coast is accreting and stable. East of this stable region, sheer greywacke cliffs back rock platforms. These are fairly resilient but the upper portion of the cliff face is prone to recession due to weathering of the cliff edge by wind, rain and spray.

Built Heritage & Archaeology: Included in this section are sites ranging in date from the first millennium BC/AD to the eighteenth and nineteenth centuries. Port Castle, an enigmatic enclosure near St Ninian’s Cave, and a mineshaft at Mary Mine are located inland and are not threatened by coastal erosion. St Ninian’s Cave, Port Castle landing place, Carghidows promontory fort and Mary Mine are located on the coastal edge. It is recommended that St Ninian’s Cave and Carghidows promontory fort be monitored for coastal erosion and storm damage. Attention should also be drawn the impact of tourists at St Ninian’s Cave and the impact of animal burrows at Carghidown.
1. POINT of CAIRNDOWN to PORT OF COUNAN
NX 385 380
4 km
Cliff (> 10m)
Raised beach with marine sand and gravels
This exposed region of the coastline contains
impressive raised beaches formed from marine
deposits. The raised beach becomes noticeably
steeper towards the east (max 61\%\). A plateau
exists in front of the beach formed by marine
sand and shingle. The foreshore is wide and
contains mainly large boulders, cobbles and
sand.

2. PORT OF COUNAN to PORT CASTLE
NX 425 359
0.8 km
Cliff (> 10m)
Till over exposed rock platform
A highly indented irregular precipitous cliff-edge
covered by till. A break in the rock platform
occurs at the Port Castle Bay which forms a fault
zone enclosing the Carghishown Formation of
greywackes.

3. PORT CASTLE to DUCKER ROCK
NX 465 344
2.3 km
Cliff (> 10m)
Till over visible rock
The cliff edge is highly indented and sea-caves
occur. Till overlays the highly fractured cliff-
edge.

SOLW/3120/0/20.12.97 118 of 490 CFA
1. GLIDS NEST to north west of LADIES STEPS
NX 410 364
3.3km
Accreting or stable
This unit is backed by a discontinuous high cliff-edge consisting of marine deposits and till. The intertidal area is wide and mostly shingle which is banking up at the current TWM and is therefore accreting and for now stable.

2. LADIES STEPS
NX 423 360
1.1km
Accreting or stable
This unit contains an irregular slope-over-wall cliff-edge. The intertidal area is wide and covered with shingle which is building up into ridges at the current HWM which suggests stability and accretion.

3. PORT CASTLE to BURROW HEAD
NX 454 142
3.7km
Eroding or stable
Twisted high irregular cliff-edge with exposed rock outcrops offshore. The base of the cliffs have been eroded into numerous precipitous pullies. Cliff-edge retreat is hard to establish but it is estimated to be slow.
Sites on the Coast Edge & Foreshore

<table>
<thead>
<tr>
<th>Site</th>
<th>Code</th>
<th>Description</th>
<th>Grade</th>
<th>Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX43NW 9</td>
<td>NX 4224 3595</td>
<td>ST NINIAN’S CAVE, Cave & Inscribed Crosses, Scheduled Ancient Monument, 5 to 11th centuries AD</td>
<td>Fair</td>
<td>Monitor</td>
</tr>
<tr>
<td>NX43NW 34</td>
<td>NX 4256 3582</td>
<td>PORT CASTLE, Landing Place, Uncertain; not located</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>NX43NW 8</td>
<td>NX 4356 3507</td>
<td>CARGHIDOWN, Promontory Fort, 1st Mill BC/AD</td>
<td>Poor</td>
<td>Survey & Monitor</td>
</tr>
<tr>
<td>NX 4392 3476</td>
<td>MARY MINE, Disused mine shaft, 18/19th century</td>
<td>Fair</td>
<td>Nil</td>
<td></td>
</tr>
</tbody>
</table>

Sites in the Hinterland

<table>
<thead>
<tr>
<th>Site</th>
<th>Code</th>
<th>Description</th>
<th>Grade</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX43NW 7</td>
<td>NX 4266 3584</td>
<td>PORT CASTLE, Castle / Enclosure, Uncertain</td>
<td>Good</td>
<td>Nil</td>
</tr>
<tr>
<td>NX 4404 M72</td>
<td></td>
<td>MARY MINI, Disused mine shaft, 18/19th century</td>
<td>Good</td>
<td>Nil</td>
</tr>
</tbody>
</table>
LAGGAN CAMP TO ROCK OF PROVIDENCE

NGR: NX 40 44/33 38

KEY

<table>
<thead>
<tr>
<th>Site Location</th>
<th>Symbol</th>
<th>Color</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGR ref. - eg.</td>
<td>Cross</td>
<td>Red</td>
<td>Listed Historic Building</td>
</tr>
<tr>
<td>NX 445 M</td>
<td>Roundel - Solid (on area)</td>
<td>Red</td>
<td>Protected Ancient Monument</td>
</tr>
<tr>
<td>NMR2 ref. - eg.</td>
<td>Roundel - Open (on area)</td>
<td>Red</td>
<td>Monument formally proposed by Historic Scotland for designation</td>
</tr>
<tr>
<td>NOU3 SW71</td>
<td>Roundel - Solid (on area)</td>
<td>Yellow</td>
<td>Older known Ancient Monument</td>
</tr>
<tr>
<td>Area</td>
<td>Cross</td>
<td>Green</td>
<td>Indefinite settlement, most likely walled</td>
</tr>
<tr>
<td>Area</td>
<td>Blue</td>
<td>Green</td>
<td>Possibly archaeologically sterile</td>
</tr>
</tbody>
</table>

MAP NO. 14
Hinterland Geology and Coastal Geomorphology: The hinterland geomorphology consists exclusively of till over exposed rock with a high cliff-edge. From Port Castle south-east to Jacker Rock the coastline is indented and overlooks rock platform. Sea-caves, arches and off-shore pinnacles occur within this region. Burrow Head forms an exposed promontory headland. There is no noticeable change in the uniform character of the hinterland geomorphology as one travels eastwards until Screen Point (see Map 16).

Erosion Class: This region of the coast appears to be eroding extremely slowly owing to the resilient nature of the greywacke geology. The rate of basal erosion of the cliffs is hard to estimate as there is no foreshore accessible on this region of coastline. Erosion by wind, rain and spray is occurring owing to the exposed aspect of the region.

Built Heritage & Archaeology: A cluster of sites survive at Burrow Head and can be separated into two groups: one ranging in date from the first millennium BC/AD through to the medieval period, and the other belonging to World War 2. The first group includes Castle Feather promontory fort and castle, the Burrow Head promontory forts, and possibly an earthwork. All four sites are suffering coastal erosion, and surveying and monitoring are recommended. In the case of the Burrow Head promontory forts, severe human impact, in the form of visitor paths and farming, is detrimentally affecting the ramparts of both sites. The second group of sites belong to the Second World War Gun Emplacements at Burrow Head. These include concrete gun holdfasts' (Lowry, 1995, 54) and a pillbox. Only the pillbox is badly affected by coastal erosion but the lack of data regarding the gun emplacements in the NMRS prompts the recommendation that both these sites be surveyed and monitored.
Map 15: Hinterland Geology and Coastal Geomorphology

1. PORT CASTLE to DUCKER ROCK
NX 465 344
2.3km
Cliff (> 10m)
Till over visible rock
The cliff edge is highly indented and sea-caves occur. Till overlies the highly fractured cliff edge.

2. DUCKER ROCK to DYKEFOOT
NX 460 343
2.3km
Cliff (> 10)
Till over visible rock
Burrow Head is an exposed promontory headland
with a precipitous cliff edge overlooking exposed rock platform.
<table>
<thead>
<tr>
<th>Sites on the Coast Edge & Foreshore</th>
<th>Sites in the Hinterland</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX43SW J</td>
<td>NX 4479 3431</td>
</tr>
<tr>
<td>NX 4483 3423</td>
<td>BURROW HEAD</td>
</tr>
<tr>
<td>CASTLE FEATHER</td>
<td>WW2 Defences</td>
</tr>
<tr>
<td>Promontory Fort / Castle</td>
<td>Mid 20th century</td>
</tr>
<tr>
<td>Scheduled Ancient Monument</td>
<td>Good</td>
</tr>
<tr>
<td>1st Mill BC/ 1st/2nd Mill AD</td>
<td>Nil</td>
</tr>
<tr>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Survey & Monitor</td>
<td></td>
</tr>
</tbody>
</table>

NX43SE 1	
NX 4553 3415	
BURROW HEAD	
Promontory Fort	
Scheduled Ancient Monument	
1st Mill BC/AD	
Poor	
Survey & Monitor	

NX43SE 3	
NX 4559 3412	
BURROW HEAD	
Promontory Fort	
Scheduled Ancient Monument	
1st Mill BC/AD	
Poor	
Survey & Monitor	

NX 4592 3414	
BURROW HEAD	
WW2 Pillbox	
Mid 20th century	
Poor	
Survey & Monitor	

NX43SE 2	
NX 4591 3419	
BURROW HEAD	
Earthwork	
Uncertain	
Fair	
Monitor	
MAP 16: DYKEFOOT TO HOWE HOLE OF SHADDOCK

Hinterland Geology and Coastal Geomorphology: This region of coastline includes the Isle of Whithorn which is a peninsula situated at the confluence of two geological faults. The hinterland becomes less steep the further one travels north. The hinterland drift geology is exclusively till overlying exposed rock. The cliff-edge is very irregular and incised, especially around Doctors Rock and beyond to Howe Hole of Shaddock. The cliff-base is commonly cut by deep gullies and offshore stacks, indicative of long term erosion, are also common.

Erosion Class: Sand and shingle are accreting in Whithorn harbour. This material is being brought in from the Isle of Whithorn Bay, possibly by accelerated sediment transportation when conditions are adverse. The rest of the coastline in this region appears to be stable but eroding at certain localities mentioned below.

Built Heritage & Archaeology: A cluster of sites at the Isle of Whithorn ranging in date from the first millennium BC/AD through to the eighteenth and nineteenth centuries and a wider distribution of more isolated sites leading north from the village, comprising later prehistoric promontory forts, a nineteenth century mill and a World War 2 platform, are included in this section. The listed buildings and remains of the port of the Isle of Whithorn, the chapel and the Castle are in good condition. Only at the promontory forts of Isle Head, Steinhead and Cairnhead is limited and localised coastal erosion evident and surveying and monitoring recommended. In the case of Isle Head fort visitor impact should also be taken into account.
1. **DYKE FOOT to ISLE HEAD (WHITHORN PENINSULA)**

NX477 356
2.3km
Cliff (< 10m)
* Till over exposed rock *

This is an exposed section of coastline that consists of greywacke rock platforms that are incised into numerous gullies. The cliff edge is very irregular and indented into a series of ledges and sheer platforms. Wave cut platforms are common at the MHWM. The harbour at Whithorn contains mainly boulders and sand.

2. **ISLE HEAD to DOCTOR'S ROCK**

NX485 370
2.3km
Cliff (> 10m)
* Till over exposed rock *

Exposed incised cliff edge indented by precipitous gullies. Stacks and coves occur in places. The cliffs are overlain with till.

3. **DOCTOR'S ROCK to HOWE HOLE of SHADDOCK**

NX489 370
2.3km
Cliff (> 10m)
* Till over exposed rock *

An exposed promontory headland occurs at Cairn Head (NX486 384) which consists of steeply shelving greywacke platforms. Portyrock Cliff (> 10m) and low edge (< 5m) Bay (NX484366) consists of incised folded outcrops of greywackee. Till meets the irregular cliff edge.
MAP 17: WHITE HILL TO CRUGGLETON BAY

Hinterland Geology and Coastal Geomorphology: This region of the coast has an exposed easterly aspect. The hinterland geomorphology is undulating with till over exposed rock. From White Port to Siddery Point the cliff-edge is precipitous and irregular and overlooks cliffs, caves and inlets. Cruggleton Bay is backed by till with a wide intertidal zone consisting of sand (forming occasional sandy spits), cobbles, boulders and sandy spits.

Erosion Class: Cliff-edge recession is an ongoing process along this stretch of coastline. From Port Allen to Siddery Point the cliff-edge shows clear evidence for slumping and sub-aerial weathering of the cliff face. The presence of caves provides further evidence for erosion. Cruggleton Bay shows evidence of wave attack towards Siddery Point. Scouring, induced by recent storm activity has resulted in sand and shingle build up some distance from the current HWMS. The northern half of the bay appears to more stable judging by the more even sand cover that is less disturbed.

Built Heritage & Archaeology: A wide distribution of isolated sites are included in this section. The sites can be generally divided into two chronological groups: two promontory forts, Dinnans and Old Fort Dinnans, and the castle and settlement of Cruggleton Castle, belonging to the 1st Millennium BC/AD and medieval period (Ewart, 1985) distributed along the coast south of Garlieston; and a second group of more widely distributed World War 2 structures, comprising a pillbox, watchtower and a mulberry. Also included in this section is a sea wall at Garlieston Bay, a landing place at Port Allen and the gardens of Galloway House. Both the two latter sites and the sites of group 1 are affected by coastal erosion to various degrees and surveying and monitoring is recommended. The promontory forts of Dinnans and Old Fort Dinnans are also adversely affected by the impact of cattle, particularly so in the case of the latter. Cruggleton Castle, excavated between 1978 and 1981 (Ewart, 1985) may also be at threat from agricultural impact in addition to the coastal erosion already documented (Ewart, 1985, 4-6).
Map 17: Hinterland Geology and Coastal Geomorphology

1. HOWE HOLE of SHADDOCK to PORT ALLEN
NX 478 400
1.4km
Cliff (> 10m)
Till over exposed rock
Irregular incised high cliff-edge overhanging by till.
Greywacke platforms moulded by wave action occur throughout the length of this unit.

2. PORT ALLEN to SIDDERY POINT
NX 418 420
3km
Cliff (> 10m)
Till over exposed rock
This exposed region of the coast is highly indented and sea-caves are present. The foreshore is narrow with rock and boulders exposed at the MLWLM.

3. SIDDERY POINT to DUMBIE POINT
NX 482 460
3km
Low edge (< 5m)
Till
This unit includes the sheltered Crugleaton Bay. The hinterland consists of all. The foreshore within the bay is very wise (<60m to the MLWLM) and continues to Garlinton Bay. The foreshore consists of poorly sorted boulders (<70%) and sand. Shingle is banked against the backshore.
MAP 17: EROSION

1. FORT ALLEN to SIDDERY POINT
NX 485430
Definitely eroding
This region of coast has an exposed easterly aspect and an irregular cliff-edge. The middle section of this unit includes Craggleton Heughs (NX 483426) which is an indented cliff line of steep cliff with sea caves. Small embayments occur in Craggleton Point (NX 485430). The precipitous nature of the cliffs with slope-over-wall characteristics suggest that this region is definitely eroding, the speed of which is difficult to monitor, but it is considered to be slow.

2. SIDDERY POINT to east of HIGH LODGE POINT
NX 480441
0.9km
Eroding or stable
Southern end of Rigg of Garlieston Bay. The intertidal area is strewn with poorly sorted cobbles and boulders. The exposed rocky outcrops are being scoured by shingle which suggests that erosion is ongoing.

3. HIGH LODGE BELT to south of GARUESTON SCHOOL
NX 476447
0.0
Stable
This unit is at the present stable owing to the shelter afforded by the bay. Shingle and sand cover the foredunes and the backshore is protected by a sea wall.
<table>
<thead>
<tr>
<th>Sites on the Coast Edge & Foreshore</th>
<th>Sites in the Hinterland</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX44SE 3</td>
<td>NX 4799 4190</td>
</tr>
<tr>
<td>NX 4786 4026</td>
<td>BUCKLE HILL, PALMALLET</td>
</tr>
<tr>
<td>OLD FORT, DINNANS</td>
<td>WW2 Coastal Watchtower</td>
</tr>
<tr>
<td>Promontory Fort</td>
<td>Mid 20th century</td>
</tr>
<tr>
<td>Scheduled Ancient Monument</td>
<td>Good</td>
</tr>
<tr>
<td>1st Mill BCAD</td>
<td>Nil</td>
</tr>
<tr>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Survey & Monitor</td>
<td></td>
</tr>
<tr>
<td>NX 4791 4024</td>
<td>NX 4792 4481</td>
</tr>
<tr>
<td>DINNANS</td>
<td>CRUGGLETON BAY</td>
</tr>
<tr>
<td>WW2 Pillbox</td>
<td>Curvilinear Wall</td>
</tr>
<tr>
<td>Mid 20th century</td>
<td>20th century</td>
</tr>
<tr>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>NX44SE 2</td>
<td></td>
</tr>
<tr>
<td>NX 4792 4057</td>
<td></td>
</tr>
<tr>
<td>DINNANS</td>
<td></td>
</tr>
<tr>
<td>Promontory Fort</td>
<td></td>
</tr>
<tr>
<td>Scheduled Ancient Monument</td>
<td></td>
</tr>
<tr>
<td>1st Mill BCAD</td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td></td>
</tr>
<tr>
<td>Survey & Monitor</td>
<td></td>
</tr>
<tr>
<td>NX44SE 18</td>
<td></td>
</tr>
<tr>
<td>NX 477 410</td>
<td></td>
</tr>
<tr>
<td>FORT ALLEN</td>
<td></td>
</tr>
<tr>
<td>Landing Place</td>
<td></td>
</tr>
<tr>
<td>Uncertain</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Monitor</td>
<td></td>
</tr>
<tr>
<td>NX44SE 4</td>
<td></td>
</tr>
<tr>
<td>NX 4842 4261</td>
<td></td>
</tr>
<tr>
<td>CRUGGLETON CASTLE</td>
<td></td>
</tr>
<tr>
<td>Castle/Mote/Settlement</td>
<td></td>
</tr>
<tr>
<td>Scheduled Ancient Monument</td>
<td></td>
</tr>
<tr>
<td>17th century AD - 17th century</td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td></td>
</tr>
<tr>
<td>Monitor</td>
<td></td>
</tr>
<tr>
<td>NX 48 43</td>
<td></td>
</tr>
<tr>
<td>GALLOWAY HOUSE</td>
<td></td>
</tr>
<tr>
<td>Gardens</td>
<td></td>
</tr>
<tr>
<td>19/20th century</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Monitor</td>
<td></td>
</tr>
</tbody>
</table>

SCLW/312/020.12.97 146 of 490 CFA
MAP 18: GARLIESTON HOUSE TO INNERWELL PLANTATION

Hinterland Geology and Coastal Geomorphology: This section of the coastline includes Siddery Point to Dumbie Point. Here, till covers a low coastal edge and backs a wide shingle beach. Garlieston Bay appears fairly sheltered but has been protected by sea defences. Marine sands and gravels outcrop at the head of the bay intermixed with regions of till and morainic fluvial/glacial drift. Towards Egerness Point the coastal edge becomes irregular. Northwards from this point the exposed cliff-edge becomes steeper until Innerwell Plantation where the cliffs shelf less steeply. At Innerwell, the cliffs give way to sand flats.

Erosion Class: Erosion is occurring on the Ringan (Unit 1) foreshore evident by scouring. At Dumbie Point a breakwater has collapsed and is leading to severe erosion of the shoreline immediately to the north. Here an ashlar built sea wall has collapsed and its fabric is spread over a wide area. The exposed soft marine sands and clays are being eroded out at a fast rate and undermining a public foot path. The problem is further compounded by the presence of a tree plantation along the shoreline. This soil behind the sea wall has been loosened further by the tree root activity. The stretch of coastline affected is about 50m in length. Loss of land behind the ashlar sea wall was seen to be about 3m in places. Garlieston Bay is stable with a low sandy beach. From Egerness as far as Innerwell Plantation the coast is fairly resilient but thought to be eroding.

Built Heritage & Archaeology: This section includes a cluster of sites around Garlieston Bay comprising a mulberry, jetties, breakwaters and the listed buildings of the village of Garlieston. The village includes warehouses, harbour buildings, mills, houses and a harbour of the eighteenth and nineteenth centuries (Graham, 1979, 46-48). All but the mulberry survive in good condition; it is threatened by sea abrasion and therefore requires monitoring. North of Garlieston Bay is the prominent fort of Egerness Castle which is suffering from limited coastal erosion. The lack of any existing plan of this site in the NMRS and the negative impact of the forestry plantation covering the site prompts the recommendation that a survey and monitoring exercise be carried out. Further north, at Innerwell Point, lies an upstanding stone which may or may not be a natural feature. This is the only site in this section located in the hinterland and is not threatened by coastal erosion.
1. SIDDERY POINT to DUMBIE POINT
NX 482 460

3km
Low edge (< 5m)
Till
This unit includes the sheltered Creggleton Bay. The hinterland consists of till. The foreshore within the bay is very wide (c.60m to the MLW) and continues to Garleston Bay. The foreshore consists of poorly sorted boulders (<76%) and sand. Shingle is banked against the backshore.

2. DUMBIE POINT to EGGERNUS POINT
NX 484 466

2.8km
Low edge (< 5m)
Marine sands and brecciated mud stones with till and drift deposits towards Eggerness Point
Garleston Bay is sheltered with a hinterland consisting of marine cover sands interpreted with tills and brecciated mud stones. Towards Eggerness point outcrops of greywacke are overlain by drift and till.

3. EGGERNUS POINT to JUTOCK POINT
NX 494 480

3km
 Cliff (> 10)
Till over exposed rock
This region of exposed coastline has a highly irregular indented cliff edge that is overlain by till. The shoreline is steep and is exposed rock platform.

4. JUTOCK POINT to INNERWELL PLANTATION
NX 480 493

1.6km
Low cliff (< 5m)
Till over exposed rock
Exposed rock platforms overlain by till. The rocky shore gives way to a sand flats.
1. South of GARLIE STON SCHOOL to west of PARK COTTAGE
 NX 482 454
 0.4km
 Stabilising
 This stretch has a wide tidal area consisting of
 outcropping rock and boulders. Shingle is
 backing up at the current HWM. The backshore
 is vegetated with salt marsh communities and low
 stunted woodland which add increased stability to
 the shore.

2. West of PARK COTTAGE to south of GARLIE STON PIER
 NX 482 459
 0.3km
 Definitively eroding
 This stretch of coastline is severely eroding. The
 foreshore consists of boulders and shingle banks.
 A stone breakwater to the south is now weaker
 with the result that it is not protecting the HWM
 from south easterly storms. Drystone armouring
 used to protect a footpath has been severely
 eroded and its fabric is being washed away by
 wave attack. The shore edge consists of
 fluvial/glacial clays and these are being scoured
 and washed away. Tree roots from mature
 woodland are exposed and general looseness of
 the soil allows the potential for greater instability.
 Shore edge retreat was found to be in excess of
 3m.

3. G ARLIESTON BAY to EGGERNESS POINT
 NX 487 468
 2.6km
 Stable or accenting
 The bay has a wide intertidal area that consists of
 sand bars with an admixture of cobbles and
 shingle. The bay is protected by a concrete sea
 wall. Shingle is being backed at the current
 HWM. Towards Eggerness Point, shingle and
 grassy bars form the HWM of this stretch of
 coast that appears to be sheltered from the
 extremes of north-easterly gales.

4. EGGERNESS POINT to INNERWELL
 POINT
 NX 494 480
 4km
 Retreating or stable
 This area consists of an incised irregular cliff-
 edge. Deep gullies have been formed by the
 removal of softer mudstones that bed between
 greenwackes. Cliff edge retreat is hard to predict
 as it is considered to be slow owing to the fairly
 resilient nature of the geology. The cliff edge
 becomes more incised towards Jutrock Point (NX
 488 491) where tabular rock platforms and stacks
 occur. These conditions suggest that the coastal
 edge is slowly eroding.
Sites on the Coast Edge & Foreshore

<table>
<thead>
<tr>
<th>Site Code</th>
<th>Location</th>
<th>Date</th>
<th>Type</th>
<th>Condition</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX 4822 4578</td>
<td>GARLIESTON BAY</td>
<td></td>
<td>Jettys/Breakwaters</td>
<td>19/20<sup>th</sup> century</td>
<td>Good</td>
</tr>
<tr>
<td>NX 4444 NE 41</td>
<td>NX 477 464</td>
<td>GARLIESTON</td>
<td>Village</td>
<td>18/19<sup>th</sup> century</td>
<td>Fair</td>
</tr>
<tr>
<td>NX 4866 4644</td>
<td>GARLIESTON BAY</td>
<td>Mulberry</td>
<td>Mid 20<sup>th</sup> century</td>
<td>Poor</td>
<td>Survey & Monitor</td>
</tr>
<tr>
<td>NX 4444 NE 5</td>
<td>NX 4947 4776</td>
<td>EGGERNESS CASTLE</td>
<td>Present Day Fort / Castle?</td>
<td>Poor</td>
<td>Survey & Monitor</td>
</tr>
<tr>
<td>NX 4444 NE 46</td>
<td>NX 4790 4932</td>
<td>INNERWELL PORT</td>
<td>Landmark Place</td>
<td>Uncertain</td>
<td>Good</td>
</tr>
</tbody>
</table>

Sites in the Hinterland

<table>
<thead>
<tr>
<th>Site Code</th>
<th>Location</th>
<th>Date</th>
<th>Type</th>
<th>Condition</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX 4840 4948</td>
<td>INNERWELL POINT</td>
<td></td>
<td>Uprighting Stone</td>
<td>Uncertain</td>
<td>Good</td>
</tr>
</tbody>
</table>
MAP 19: SOUTH OF BALFERN TO CROOK OF BALDOON

Hinterland Geology and Coastal Geomorphology: This region forms the lower estuary of Wigtown Bay. The coastline to the south of South Balfern consists of till drift deposits backing wide tidal flats. From this location the coastal edge change markedly to estuarine conditions. North to the Crook of Baldoon, salt-marsh incised with drainage channels overtook the featureless tidal mud flats. Breakwaters have been employed to trap sediment along the coast. North of Crook of Baldoon salt-marsh continues to a breakwater at the mouth of the River Bladnoch.

Erosion Class: The salt-marsh edge appears to be accreting and stable. Alluvial mud is accreting in front of the salt-marsh. The likely origin of these deposits is in all probability due to high levels of suspended sediment brought down the River Cree trapped in the estuary by the incoming tides.

Built Heritage & Archaeology: A scattered distribution of nineteenth and twentieth century sites are included in this section. They comprise fishing net stakes and causeway foundations on the coastal edge and a disused farmhouse and World War 2 defence structure, possibly a bombing decoy control post relating to Baldoon Airfield (Lowry, 1995, 63-65), situated in the hinterland. All sites survive in good condition and no action is required.
Map 19: Hinterland Geology and Coastal Geomorphology

1. JETROCK POINT to INNERWELL PLANTATION
NX 480 493
1.8km
Low cliff (<5m)
Till over exposed rock
Exposed rock platforms overlain by till. The rocky shore gives way to a sand flats.

2. INNERWELL PLANTATION to CROCK OF BALDOON
NX 467 540
4.3km
Low edge (<5m)
Saltmarsh and sand and mud flats
Marine or lower estuary of Wigtown Bay, dominated by salt-marsh on the hinterland. The foreshore is sandy interspersed with mud in part.

3. CROCK OF BALDOON to CRAIGHILL
NX 447 540
4km
Low edge (<5m)
Saltmarsh and estuarine mud
Saltmarsh incised with drainage channels protected by breakwaters towards its south. The meandering River Chadbourn is incised with small creeks with well developed saltmarsh.

SOLW/2120/0/20.12.97 158 of 490 CFA
MAP 19: EROSION

1. INNERWELL POINT to the north of CHAPEL HILL
 NX 475 497
 3.5km
 Eroding or stable
 This unit consists of slowly eroding rock platform in between stretches of sand and shingle. The cliff-edge is exposed but stabilised by vegetation. The intertidal area is wide and consists of sand.

2. North of CHAPEL HILL
 NX 450 520
 5km
 Both accreting and stable
 This region forms the lower estuary of Wigtown Bay and is a salt marsh (Mere) formed from the reclamation of alluvium development. Breakwaters have been employed to reduce sediment drift along the coastal edge. Drains intersect the marsh at regular intervals. Mud is accreting forming steep banks. Arcuate slope failure on the inner channel edges near the HWM shows that this region is dynamic and prone to occasional erosion.

SOLW/3120/20 12.97 160 of 490 CFA
Sites on the Coast Edge & Foreshore

<table>
<thead>
<tr>
<th>Site Code</th>
<th>Site Name</th>
<th>Feature Details</th>
<th>Condition</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX 4750 5002</td>
<td>INNERWELL PLANTATION</td>
<td>Fishing Net Stakes</td>
<td>19/20th century</td>
<td>Good</td>
</tr>
<tr>
<td>NX 4478 5223</td>
<td>SKELLARIE PLANTATION</td>
<td>Causeway Foundations</td>
<td>20th century</td>
<td>Good</td>
</tr>
</tbody>
</table>

Sites in the Hinterland

<table>
<thead>
<tr>
<th>Site Code</th>
<th>Site Name</th>
<th>Feature Details</th>
<th>Age</th>
<th>Condition</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX 4458 5250</td>
<td>CROOK OF BALDOON</td>
<td>WW2 Coastal Defence Structure</td>
<td>Mid 20th century</td>
<td>Good</td>
<td>Nil</td>
</tr>
<tr>
<td>NX 4450 5385</td>
<td>CROOK OF BALDOON</td>
<td>Dissused Farmhouse</td>
<td>19/20th century</td>
<td>Good</td>
<td>Nil</td>
</tr>
</tbody>
</table>